
Towards Minimum Fleet for Ridesharing-Aware
Mobility-on-Demand Systems

Chonghuan Wang†, Yiwen Song†, Yifei Wei§, Guiyun Fan†, Haiming Jin*‡, Fan Zhang¶
†Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China

‡John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, Shanghai, China
§Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
¶Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

Email: {wangchonghuan, gavinsyw, weiyifei, fgy726, jinhaiming}@sjtu.edu, zhangfan@siat.ac.cn

Abstract—The rapid development of information and commu-
nication technologies has given rise to mobility-on-demand (MoD)
systems (e.g., Uber, Didi) that have fundamentally revolutionized
urban transportation. One common feature of today’s MoD sys-
tems is the integration of ridesharing due to its cost-efficient and
environment-friendly natures. However, a fundamental unsolved
problem for such systems is how to serve people’s heteroge-
neous transportation demands with as few vehicles as possible.
Naturally, solving such minimum fleet problem is essential to
reduce the vehicles on the road to improve transportation effi-
ciency. Therefore, we investigate the fleet minimization problem in
ridesharing-aware MoD systems. We use graph-theoretic methods
to construct a novel order graph capturing the complicated inter-
order shareability, each order’s spatial-temporal features, and
various other real-world factors. We then formulate the problem
as a tree cover problem over the order graph, which differs from
the traditional coverage problems. Theoretically, we prove the
problem is NP-hard, and propose a polynomial-time algorithm
with a guaranteed approximation ratio. Besides, we address the
online fleet minimization problem, where orders arrive in an
online manner. Finally, extensive experiments on a city-scale
dataset from Shenzhen, containing 21 million orders from June
1st to 30th, 2017, validate the effectiveness of our algorithms.

I. INTRODUCTION

With the rapid development of mobile Internet, cloud com-
puting, and sensing technologies, mobility-on-demand (MoD)
systems (e.g., Uber, Lift, Didi) have fundamentally revolu-
tionized the way urban residents travel and commute [1–4].
In a typical MoD system, passengers send via a smartphone
app their ride orders to a platform, which usually resides in
the cloud, keeps tracking the GPS coordinates of the vehicles
managed by it, and matches the vast number of passenger
orders with the available vehicles in real time. Foreseeably,
the promising rise of the increasingly capable autonomous
and connected vehicles will further facilitate such way of on-
demand urban mobility in the near future.

Nowadays, existing MoD systems invariably choose to inte-
grate ridesharing into their services by offering passengers the
flexible choice of sharing a ride with others, which oftentimes
costs less than taking a ride by themselves. Besides cost effi-
ciency, through enabling one vehicle to serve multiple orders
simultaneously, ridesharing could also potentially dramatically
decrease the overall number of vehicles on the road, which

*Corresponding author.

consequently helps conserve non-renewable energy resources,
reduce air pollution, and alleviate traffic congestion. As a result
of the above benefits, ridesharing awareness has thus become
a common feature of today’s MoD systems.

Though promising, to serve people’s massive demands for
personal mobility, existing MoD systems still have to run
thousands of vehicles even in a single city, which constitute
a significant portion of the overall number of vehicles a city
has. It thus becomes imperative to seek ways so as to best size
and operate the fleet of on-demand vehicles for transportation
efficiency and environment friendliness. Therefore, in this
paper, we investigate the problem of minimizing the vehicle
fleet needed to serve people’s mobility demands in ridesharing-
aware MoD systems. Although the minimum fleet problem
has already been solved for ridesharing-free MoD systems by
a pioneering work in Nature [5], the ridesharing awareness,
together with the diverse and complicated scenarios of real-
world MoD systems, poses a wide scope of unique challenges
that cannot be fully addressed by the methods proposed in [5],
as well as other existing works.

The first challenge comes from the heterogeneity of mobility
demands in ridesharing-aware MoD systems, such as whether
the passengers are willing to share a vehicle, how many
passengers one order has, when and where the passengers want
to be picked up, and many others. Such diverse heterogeneity
inevitably makes it highly non-trivial to construct a realistic
model for ridesharing-aware MoD systems. Next, the more
complicated shareability relationships among orders caused by
the integration of ridesharing further aggravate the challenges
of making appropriate order-vehicle matching decisions. In a
ridesharing-free MoD system, a vehicle can only be shared by
passenger orders across different time and locations. However,
ridesharing-aware MoD systems additionally allow multiple
orders to share one vehicle at the same time, where an order
may even be shareable with different sets of orders as time
evolves. Furthermore, minimizing the city-wide on-demand
vehicle fleet with humongous numbers of passenger orders is
naturally a large-scale optimization problem, which inevitably
calls for efficient solution algorithms with low computational
complexity so as to be implementable in practice.

To address these challenges, we build a novel order graph
for ridesharing-aware MoD systems based on graph-theoretic

methods, which captures collectively the spatial-temporal fea-
tures of each order, the complex inter-order shareability re-
lationships, as well as a wide spectrum of other real-world
factors. Under such graph representation, the set of orders that
each vehicle serves naturally form a tree structure. We thus
formulate the minimum fleet problem as finding the minimum
number of trees that cover the entire order graph. Such
tree cover problem is similar to yet fundamentally different
from traditional coverage problems (e.g., submodular cover).
Theoretically, we prove the NP-hardness of the formulated
tree cover problem by a reduction from the traditional bin
packing problem. We then design a polynomial-time algorithm
to solve the problem with a guaranteed approximation ratio.
Apart from the offline setting, we also investigate the online
fleet minimization problem, where passenger orders arrive
sequentially in an online manner, and propose an efficient
algorithm for making online order dispatch decisions.

In summary, this paper makes the following contributions.
• To the best of our knowledge, this paper is the first work

that addresses the city-scale minimum fleet problem for
ridesharing-aware MoD systems.

• We build a novel order graph for ridesharing-aware MoD
systems, which effectively captures the diverse heterogene-
ity and complex sharability among passenger orders. Be-
sides, we formulate the minimum fleet problem as finding
the minimum tree cover of the order graph, which funda-
mentally differs from the traditional coverage problems.

• Theoretically, we prove that the formulated tree cover prob-
lem is NP-hard, and propose a polynomial-time algorithm
to solve it with a 1 + lnλ approximation ratio, where λ is
the largest number of orders that one vehicle serves.

• Extensive experiments are conducted on a city-scale real-
world dataset of Shenzhen, China, containing 21 million
passenger orders from June 1st to June 30th, 2017, which
validate the effectiveness of our algorithms.

II. PRELIMINARIES

In this section, we give an overview of MoD systems, define
the order graph, and describe the problem we aim to solve.
A. System Overview

We consider a ridesharing-aware MoD system operated by
a cloud-based platform, which tracks the locations of the
vehicles in the system by collecting their GPS coordinates
every few seconds, and receives the ride orders that passengers
send via their smartphones. In the back-end, the platform
periodically executes the order dispatch algorithm [6–9] to
match passenger orders with available vehicles, which may
dispatch multiple orders willing to share their rides to the same
vehicle at the same time. After the vehicle-order matching,
the platform will then return the matching results to the
smartphones of the passengers and drivers in the system.

We discretize the entire geographical area into P equal-
size non-overlapping cells, denoted as P = {1, 2, · · · , P}.
Moreover, we consider cell1 as the smallest unit for location,

1The size of a cell can be chosen flexibly in our model, and as will be
discussed after Definition 5, it does not affect the scalability of our model.

and do not distinguish the locations within a cell. Similarly,
we discretize the planning horizon into T equal-length (e.g.,
10 seconds) time slots, denoted as T = {1, 2, · · · , T}. Based
on P and T , we define a trajectory in Definition 1.
Definition 1 (Trajectory). A length-l trajectory, denoted as
ϕ = {(t1, p1), (t2, p2), · · · , (tl, pl)}, is a series of l spatial-
temporal tuple, where each tuple (tk, pk) of ϕ satisfies that
(tk, pk) ∈ T × P , tk+1 and tk satisfies that tk+1 = tk + 1,
and pk is the cell that the trajectory traverses at time slot tk.

Note that the length of a trajectory refers to the number of
consecutive time slots it lasts rather than its physical length.

B. Order Graph
In our MoD system, passengers can choose whether to share

rides with others. We thus define an order as in Definition 2.

Definition 2 (Order). We define an order in our MoD system
as a 3-tuple oi = (ϕi, ni, ξi).
• ϕi = {(ti,1, pi,1), (ti,2, pi,2), · · · , (ti,li , pi,li)} denotes the

trajectory of this order that starts from the time slot ti,1when
the passegers of this order are picked up, and ends at the
time slot ti,li when they arrive at their destination.

• ni represents the number of passengers of oi. We use C to
denote the maximum number of passengers that a vehicle
could carry, and thus, ni ≤ C.

• ξi ∈ {0, 1} indicates whether oi is a ridesharing order. That
is, ξi = 1 indicates that order oi is willing to share a vehicle
with others, and ξi = 0 otherwise.

With the advancement of machine learning techniques,
given the origin, destination, and starting time, the trajectory
of an order could be well estimated using various methods,
such as diffusion convolutional recurrent neural network [10],
graph multi-attention network [11], and many others [12,13].
Thus, in our model, each order oi uniquely corresponds to a
trajectory ϕi. We use ϕi(t1, t2) to denote the part of trajectory
ϕi from time slot t1 to t2. Next, in the following Definition
3, we define the concept of shareable orders.

Definition 3 (Shareable Orders). Two orders oi and oj are
shareable (i.e., can share a vehicle simultaneously), if they
are both ridesharing orders (i.e., ξi = ξj = 1), and either of
the two shareability conditions (s-Conditions) is satisfied.
• s-Condition 1: The trajectory of either oi or oj is a subset

of the other’s (i.e., ϕi ⊂ ϕj or ϕj ⊂ ϕi), and ni+nj ≤ C.
• s-Condition 2: oi and oj satisfy ni + nj ≤ C, and the

following Equation (1),{
ϕi(ti,1, tj,lj) = ϕj(ti,1, tj,lj), if ti,1 > tj,1,

ϕi(tj,1, ti,li) = ϕj(tj,1, ti,li), otherwise,
(1)

which ensures that if order oj starts before order oi (i.e.,
ti,1 > tj,1), the trajectories of them overlap between time
slots ti,1 and tj,lj , and otherwise, their trajectories overlap
between time slots tj,1 and ti,li .

Naturally, three or more orders are shareable, if each pair of
them are shareable, and they have a total number of passengers
upper bounded by C. Figure 1 shows an example of two pairs

Fig. 1: Example of shareable orders, where different orders traverse the same
cell in the same time slot.

of shareable orders, where orders o1 and o2 satisfy s-Condition
1, because o2’s trajectory is a subset of o1’s, and orders o3 and
o4 satisfy s-Condition 2, as their trajectories partly overlap.

Besides shareability, succession is another relationship that
widely exists among orders, which we define in Definition 4.

Definition 4 (Order Succession). Order oj is successional to
oi (i.e., can be served in succession to oi), if a vehicle can
reach oj’s origin pj,1 by its starting time tj,1 after serving oi.

Next, we formally define the order graph in Definition 5.

Definition 5 (Order Graph). The order graph of any order set
O is a directed graph G = (V, E), where each vertex vi,m ∈ V
corresponds to the spatial-temporal tuple (ti,m, pi,m) of order
oi ∈ O, and there is a directed edge (vi,m, vj,n) from vi,m to
vj,n, if any of the three edge conditions (e-Conditions) holds.
• e-Condition 1 (Intra-Order): vi,m and vj,n are from the

same order and adjacent in time (i.e., i = j and n = m+1).
• e-Condition 2 (Shareable Orders): oi and oj are shareable,
oj starts at time slot ti,m (i.e., ti,m = tj,1), and vj,n
corresponds to oj’s origin (i.e., n = 1).

• e-Condition 3 (Order Succession): oj is successional to oi,
vi,m corresponds to oi’s destination (i.e., m = li), and vj,n
corresponds to oj’s origin (i.e., n = 1).

That is, three types of edges may exist in an order graph,
including those between two consecutive spatial-temporal tu-
ples of the same order, and those from one order to another
shareable with or successional to it. Note that the cell size
will not harm the scalability of the order graph. In fact, the
smaller a cell, the stricter the constraint is for two orders to be
shareable, and thus the less edges an order graph will have.

Table I gives an example of five orders in an MoD system,
and Figure 2 shows the corresponding order graph with C = 3.
By Definition 5, each vertex vi,m stands for the mth spatial-
temporal tuple of order oi. Furthemore, there exist edges
between vertices of the same order as they satisfy e-Condition
1, edges (v1,2, v2,1), (v1,3, v3,1), and (v2,2, v3,1) exist due to
e-Condition 2, and e-Condition 3 leads to the existence of
edges (v1,7, v5,1), (v3,2, v4,1), and (v2,4, v4,1). Although the
trajectories of o1 and o4 overlap, no edge exists from v1,6 to
v4,1, because o4 is not a ridesharing order (i.e., ξ4 = 0).

C. Problem Description

As aforementioned, this paper aims to minimize the num-
ber of vehicles needed to serve the passegner orders in

Order ϕi ni ξi

o1 {(t1, l1), (t2, l2), (t3, l3), (t4, l4),(t5, l5), (t6, l6), (t7, l7)} 2 1

o2 {(t2, l2), (t3, l3), (t4, l4), (t5, l5)} 1 1

o3 {(t3, l3), (t4, l4)} 1 1

o4 {(t6, l15), (t7, l7), (t8, l8), (t9, l9), (t10, l10)} 1 0

o5 {(t9, l11), (t10, l12), (t11, l13), (t12, l14)} 1 1

TABLE I: Example of five orders in an MoD system.

a ridesharing-aware MoD system. We start addressing this
problem by formally describing it as an optimization over the
order graph. As building a complete order graph needs all the
orders’ information, the problem described here is the offline
version. Its online version will be described in Section V.

Next, we define the dominating order among those served
by a vehicle at the same time as the one that finishes the last,
which changes over time. For example, in Figure 2, if an empty
vehicle picks up order o3 at time slot t3, o3 is the vehicle’s
dominating order at t3. At time slot t6, when the same vehicle
starts serving order o4, its dominating order switches to o4.

Clearly, all of the vertices of the same order forms a path
in the order graph, and we thus refer to such path as an order
path. Next, we define the dispatching tree in Definition 6.
Definition 6 (Dispatching Tree). A dispatching tree over an
order graph is a tree that consists of multiple complete order
paths that satisfy the following tree constraints (t-Constraints).
• t-Constraint 1: Any edge in a dispatching tree which

satisfies e-Condition 2 or 3 starts from the dominating order.
• t-Constraint 2: At any time slot, the tree covers orders with

at most C passengers in total.
We use D to denote the set of all the dispatching trees over
the order graph.

 !

 "

 # $

 %

&!,! &!," &!,# &!,$ &!,% &!,' &!,(

&",! &"," &",# &",$

&#,! &#," &$,! &$," &$,# &$,$ &$,%

&%,! &%," &%,# &%,$

Dispatching Tree 1

Dispatching Tree 2

Fig. 2: Order graph that corresponds to Table I.

 !

 "

 # $

 %

&!,! &!," &!,# &!,$ &!,% &!,' &!,(

&",! &"," &",# &",$

&#,! &#," &$,! &$," &$,# &$,$ &$,%

&%,! &%," &%,# &%,$

Dispatching Tree 1

Dispatching Tree 2

Fig. 3: Constructed dispatching trees over the order graph in Figure 2.

Essentially, t-Constraint 1 ensures that any order being
served by a vehicle can maintain its trajectory until it finishes,
even though the vehicle picks up a new ridesharing order. In
Figure 3, we show two dispatching trees constructed over the
order graph in Figure 2, where dispatching tree 1 consists of
orders o1 and o5, and dispatching tree 2 contains orders o2, o3,
and o4. Clearly, orders o1, o3, and o4 cannot form a feasible
dispatching tree, as edge (v3,2, v4,1) violates t-Constraint 1.

By Definition 6, the orders in one dispatching tree can be
served by one vehicle, and as an order can only be served
once, each order path should be covered by exactly one
dispatching tree. A dispatching scheme for all orders can thus
be represented as a forest composed of multiple dispatching
trees that cover the entire order graph.

Thus, the aforementioned minimum fleet problem is equiv-
alent to the dispatching tree cover (DTC) problem given in
Definition 7, which we actually solve in this paper.

Definition 7 (DTC Problem). Given an order graph, the DTC
problem aims to find a forest F∗ ⊆ D with the minimum
cardinality, referred to as the minimum dispatching tree (DT)
cover, such that each order path is covered by one and only
one dispatching tree in F∗.

Figure 3 shows the minimum DT cover of the order graph
in Figure 2, F∗ = {{o1, o5}, {o2, o3, o4}}, which means that
the five orders in the example can be served by two vehicles.

III. FORMULATION AND HARDNESS ANALYSIS

A. Mathematical Formulation

We first formulate the DTC problem given in Definition 7
formally as the following integer-linear optimization program.

DTC : min
∑
i:τi∈D

xi (2)

s.t.
∑
i:oj∈τi

xi = 1,∀oj ∈ O, (2a)

xi ∈ {0, 1}, ∀τi ∈ D. (2b)

Although the above DTC program requires the knowledge
of the dispatching tree set D, whose size is exponential w.r.t. to
the overall number of orders, such knowledge is merely needed
for mathematically representing the DTC problem. In fact, the
DTC problem itself, as well as the algorithms we propose in
Section IV only need as input the order graph G, instead of the
dispatching tree set. Furthermore, in DTC, each dispatching
tree τi ∈ D corresponds to a binary variable xi ∈ {0, 1},
where xi = 1 indicates that dispatching tree τi is selected in
the DT cover, and otherwise τi is not selected. The objective
function

∑
i:τi∈D xi given by Equation (2) is exactly the total

number of selected dispatching trees. Constraint (2a) means
each order is covered by exactly one dispatching tree.

The DTC problem, though shares some resemblance with
the minimum submodular cover (MSC) problem [14], is fun-
damentally different from it. In DTC, an order can be covered
once and only once, which indicates that the ground set (i.e.,
the set of all feasible dispatching trees D) is not necessarily
a feasible solution for DTC, and thus makes DTC violate
submodularity. Specifically, DTC differs from the set cover
(SC) problem, which is essentially an MSC problem, as each
element in SC can be covered unlimited times. Moreover, the
path cover problem [5] is clearly a special case of DTC. The
above differences distinguish DTC from traditional coverage
problems, and call for a new suite of solutions and analyses.

B. Hardness Analysis
In order to show the hardness of the DTC problem, we first

define the 2-DTC problem, which is a special case of the DTC
problem with a stricter constraint that each vehicle can serve at
most two orders at the same time. We refer to any dispatching
tree that satisfies such constraint as a width-2 dispatching tree,
and the set that consists of all the width-2 dispatching trees
over the order graph as D2. Clearly, at any time slot, a width-
2 dispatching tree has vertices from at most two orders. The
mathematical formulation of 2-DTC is almost the same with
that of DTC except that the set D is replaced by D2. Next,
we state the decision version of 2-DTC as follows.
• INSTANCE: Order graph G and positive integer K.
• QUESTION: Can all the order paths in G be covered once

and only once by at most K width-2 dispatching trees?
Next, we prove in Theorem 1 the NP-completeness of the
above decision version of 2-DTC.
Theorem 1. The decision version of the 2-DTC problem is
NP-complete.
Proof. We construct prove this theorem by a reduction from
bin packing to 2-DTC. We let I be a finite set of items,
s(un) ∈ Z+ be the size of each item un ∈ I, and an
integer B be the capacity of every bin. Given any positive
integer K, the bin packing problem [15] asks whether I can
be partitioned into disjoint sets I1, I2, · · · , IK such that the
overall size of the items in each set does not exceed B. Clearly,
we have

∑
n s(un) ≤ KB. Note that if the capacity B goes to

infinity, the bin packing problem can be directly solved. Thus,
assuming B is upper bounded by a sufficiently large constant
U (i.e., B < U) does not affect its hardness.

Next, we describe our construction of an order graph from
an instance of bin packing. We use s(un) and B vertices to
represent each item and each bin, respectively. We denote the
B vertices from bin i as ci,B , ci,B−1, · · · , ci,1, and introduce
a directed edge from ci,m to ci,m−1 for each 1 ≤ i ≤ K
and 1 < m ≤ B to form an order path. Similarly, we
introduce directed edges to connect the vertices of each item
to form an order path. Moreover, we connect ci,j to the
first node of un’s path, if j ≥ s(un) (i.e., the remaining
capacity of bin i is enough to carry un). If a tree chooses
the edge from ci,m to un, it means that bin i takes in un with
remaining capacity m, and the tree cannot have other edges
starting from {ci,m, ci,m−1, · · · , ci,j−s(un)+1}, as the capacity
has been held by un. In this way, each feasible tree is thus
width-2. Then, the problem becomes finding K width-2 trees
to cover all the order paths. As there are no edges between
the order paths of different bins, the K bins’ order paths will
surely be in different trees. Besides, as B ≥ s(un),∀un ∈ I,
the order paths of the bins are surely the dominating paths.
Thus far, bin packing has been successfully reduced to 2-DTC.

The above reduction takes
∑
n s(un) + KB steps to con-

struct all the vertices, which is upper bounded by 2KB.
The complexity for constructing the edges cannot exceed
O(2KB + |I|B), as there are no more than O(2KB) intra-
order edges and O(|I|B) edges between order paths. Thus,
the reduction can be finished in O(2KB + |I|B) , which is

upper bounded by O(2KU + |I|U). Besides, given a set of
dispatching trees, it is easy to check whether all the order paths
are covered exactly once, which guarantees that the problem is
NP. Thus, the decision version of 2-DTC is NP-complete.
As 2-DTC’s decision version is already NP-complete, we
naturally have Corollary 1 on the NP-hardness of 2-DTC itself.

Corollary 1. The 2-DTC problem is NP-hard.

As D2 ⊆ D, 2-DTC can be regarded as a special case of
the DTC problem, and thus we have Corollary 2.

Corollary 2. The DTC problem is NP-hard.

IV. PROPOSED ALGORITHMS

A. Largest-Tree-First DTC Algorithm
We present our Largest-Tree-First DTC (LTF-DTC) Algo-

rithm in Algorithm 1, which solves the DTC problem with a
guaranteed approximation ratio. Our design philosophy is to
efficiently search in each iteration the largest dispatching tree,
which is the dispatching tree that covers the most order paths
in the order graph, until the entire graph is covered.

The input of the LTF-DTC algorithm is the order graph
G. Algorithm 1 starts with initializing an empty DT cover F
(line 1). The main loop (line 2-7) is the process of iteratively
searching the largest dispatching tree, as long as the remaining
order graph is non-empty. Specifically, in each iteration, the
algorithm searches the largest dispatching tree τ in the current
order graph (line 3), and includes τ into the DT cover F (line
4). Next, it lets V be the set of vertices covered by tree τ (line
5), removes V from the vertex set V (line 6), and removes the
edges incident to these vertices from the edge set E (line 7).
Finally, the algorithm returns the DT cover F (line 8).

Algorithm 1: LTF-DTC Algorithm
Input: order graph G;
Output: DT cover F ;
// Initialization.

1 F ← ∅;
// Iteratively search the largest DT.

2 while G is non-empty do
3 find the largest feasible dispatching tree τ of G ;
4 F ← F ∪ {τ};

// Delete all vertices covered by τ.

5 V ← {vi,k : vi,k ∈ τ};
6 V ← V \ V;

// Delete all edges incident to τ.

7 E ← E \
{
(vi,k, vj,l) ∈ E|vi,k ∈ V or vj,l ∈ V

}
;

8 return F ;

Note that it is highly non-trivial to find the largest dispatch-
ing tree in each iteration, and we will elaborate on addressing
this issue in Section IV-B. Next, we provide theoretical anal-
ysis of the approximation ratio of Algorithm 1 in Theorem 2.

Theorem 2. Algorithm 1 has a 1 + lnλ approximation ratio,
where λ denotes the size of the largest tree in the order graph.

Proof. We start the proof of this theorem by introducing some
extra notations. We use OPT to denote the optimal solution
for DT cover, OPTi to denote the optimal solution after the

ith iteration of Algorithm 1, and fi to denote the number of
orders that have been covered after i iterations. Thus, we have
that OPTi ≤ N − fi, because the optimal number of trees can
never exceed the remaining number of orders.

Moreover, the optimal solutions in two consecutive iter-
ations do not increase, i.e., OPTi ≤ OPTi−1. Because a
dispatching tree represents a dispatching plan for one vehicle,
if we take some orders off from a tree, the remaining ones can
still be served by one vehicle. Therefore, the optimal solution
of the last iteration after we cut off all the orders covered
by a tree selected by Algorithm 1 is still a feasible solution.
Naturally, we have OPTi ≤ OPTi−1 ≤ · · · ≤ OPT.

Thus far, we have two constraints on OPTi. The right-hand-
side of the first constraint, i.e., N−fi, decreases monotonically
with the increase of fi. At first, N − fi ≥ OPT. However, as
the algorithm proceeds, N − fi becomes closer to OPT. Such
observation indicates that as long as OPT 6= 1, there exists a
threshold k, such that fi ≤ N − OPT,∀i < k.

For each iteration i < k, we have that

fi − fi−1 ≥
N − fi−1

OPTi−1
≥
N − fi−1

OPT
,

which can be transformed into

fi ≥
N

OPT
+

OPT− 1

OPT
fi−1.

Then, by iteration, we have

fi ≥
N

OPT

(
1 +

OPT− 1

OPT
+ · · · +

(OPT− 1

OPT

)i−1
)

= N

(
1−

(OPT− 1

OPT

)i)
.

As fi ≤ N − OPT, the above inequality becomes

OPT ≤ N
(
1−

1

OPT

)i
≤ N exp

(
−

i

OPT

)
.

Thus, the threshold k satisfies k ≤ OPT ln
(
N

OPT

)
. For the

second stage, there are no greater than OPT orders left, and
the total number of steps g satisfies

g ≤ k + OPT ≤ OPT + OPT ln
(N

OPT

)
.

Then, ratio of g
OPT satisfies that
g

OPT
≤ 1 + ln

(N

OPT

)
≤ 1 + lnλ,

where λ in the size of the largest dispatching tree.

In real-world MoD systems, the value of λ is typically small
enough so that the approximation ratio given in Theorem 2 is
meaningful in practice. In fact, there even exist two special
cases given in the following Corollary 3, where the LTF-DTC
Algorithm can provide the exact optimal solution.

Corollary 3. The LTF-DTC Algorithm returns the optimal
solution in either of the following special cases.

• Case 1: There exist no shareable or successional orders.
• Case 2: The optimal solution is 1, i.e., OPT = 1.

Proof. In Case 1, as no shareable or successional orders exist,
i.e., λ = 1, Algorithm 1 returns the exact optimal solution.
Then, in Case 2, as OPT= 1, the dispatching tree that covers
all the order paths coincides with the largest dispatching tree,
which will be returned in the first iteration of Algorithm 1.

B. DP Largest Dispatching Tree Algorithm

In this section, we propose in Algorithm 2 the dynamic
programming-based Largest dispatching Tree (DP-LDT) algo-
rithm to find the largest dispatching tree in Algorithm 1.

In this paper, we focus on the case with C = 3, and our
rationale for such choice is two-fold. On one hand, although a
typical vehicle2 in a MoD system has over 3 passenger seats,
it usually takes no more than 3 passengers simultaneously in
practice. On the other hand, to avoid passenger experience
degradation from in-vehicle overcrowdedness, it is desirable
that a vehicle takes no more than 3 passengers at the same
time. Thus, it is reasonable and practical enough to choose
C = 3. Our algorithms and analyses can be easily extended
to C ≥ 4 by considering additional cases.

The input of the DP-LDT algorithm is the order graph G. It
starts with associating each vertex vi,j with li (i.e., the length
of the order oi’s trajectory) values, denoted as fri,j with r ∈
{0, 1, · · · , li − 1}, and initializing all the values as 0 (line
1-3). Note that fri,j represents the largest number of orders
one vehicle can serve from time slot ti,j to the end of the
planning horizon, if order oi shares the vehicle with another
order whose starting time is earlier than oi during the first r
time slots. Clearly, when oi is the dominating order, r can not
exceed li−1, and that is the reason why r ∈ {0, 1, · · · , li−1}.

Algorithm 2: DP-LDT Algorithm
Input: order graph G;
Output: the largest dispatching tree τ ;
// Initialization.

1 foreach vertex vi,j in G do
2 foreach r ∈ {0, 1, · · · , li − 1} do
3 fri,j ← 0;

// Update the values of each vertex.
4 foreach n ∈ {T, T − 1, · · · , 1} do
5 foreach vi,j s.t. ti,j = n do
6 foreach r ∈ {0, 1, · · · , li − 1} do
7 if ni = 3 or ξi = 0 then
8 update fri,j according to Theorem 3;

9 else if ni = 2 then
10 update fri,j according to Theorem 4;

11 else
12 update fri,j according to Theorem 5;

// Find the root node.

13 i∗ ← argmax
i:vi,1∈G

{f0
i,1};

14 set the root of the largest dispatching tree τ as vi∗,1;
15 return τ according to the dynamic programming records;

Then, the algorithm utilizes dynamic programming to cal-
culate each value fri,j in the following three cases (line 4-12).
If order oi has 3 passengers or is a non-ridesharing order (i.e.,
ni = 3 or ξi = 0), each fri,j is updated according to Theorem 3
(line 7-8). If order oi has 2 passengers (i.e., ni = 2), we update
each fri,j according to Theorem 4 (line 9-10). Otherwise, fri,j
is updated according to Theorem 5. Note that we not only

2As minivans and buses are still relatively rare in today’s MoD systems,
we do not consider them in our model.

record each fri,j’s value, but also how to achieve them. After
calculating all fri,j’s, we set the vertex with the largest f0i,1
as the root of the largest tree τ (line 13-14). Finally, we
return the largest dispatching tree τ according to the dynamic
programming records (line 15).

Next, we discuss our method of calculating the value fri,j
in the aforementioned 3 cases in the following Theorems 3,
4, and 5. For simplicity of presenting these theorems, we first
define two functions in the following Equations (3) and (4).

h
(
S, fzx,y

)
=

1 + max
s:os∈S

fzx,y , if S 6= ∅,

0, otherwise,
(3)

and

w
(
S, fzx,y

)
=

2 + max
s,t:os,ot∈S

fzx,y , if |S| ≥ 2,

0, otherwise.
(4)

In both equations, S is a set of orders, and x, y, and z
are indices that depend on i, j, r, s, and t. Then, for order
oi, we use Sui = {os|(vi,li , vs,1) ∈ E , ti,li < ts,1} to denote
the set of orders that are successional to oi. At time slot ti,j ,
all of the orders shareable with oi can be divided into four
categories by the number of passengers and whether it changes
the dominating order (i.e., it finishes later than oi). Therefore,
we adopt Sαi,j,n = {os|(vi,j , vs,1) ∈ E , ts,ls ≤ ti,li , nj = n}
to represent the set of orders with n passengers that can share
the vehicle with oi and do not change the dominating order,
and if the dominating order changes, the set is denoted as
Sγi,j,n = {os|(vi,j , vs,1) ∈ E , ti,li > ts,ls , nj = n}. Clearly,
n ∈ {1, 2}, because orders with 3 passengers are not shareable
with any other order, due to the capacity constraint.

Next, we show how to calculate fri,j for orders with ni = 3
or ξi = 0 in Theorem 3. In this case, we only need to consider
the orders successional to oi. Since we are searching the largest
dispatching tree, the vehicle should be dispatched to order os
successional to oi with the largest f0s,1.
Theorem 3. For each order oi with ni = 3 or ξi = 0,

fri,j =

{
h
(
Sui , f0s,1

)
, if j = 1 and r = 0,

0, otherwise.

Then, we show how to calculate values for orders with two
passengers in Theorem 4. The proof is given in Appendix A.
Theorem 4. For each order oi with ni = 2 and ξi = 1,
• if r < j < li,

fri,j =max

{
fri,j+1, h

(
Sαi,j,1, f

j+ls−1
i,j+ls

)
, h
(
Sγi,j,1, f

li−j+1
s,li−j+2

)}
,

• if j = li,
fri,j = max

{
h
(
Sui , f0s,1

)
, h
(
Sαi,j,1, f

j+ls−1
i,j+ls

)
, h
(
Sγi,j,1, f

li−j+1
s,li−j+2

)}
,

• and otherwise fri,j = 0.
Next, we discuss the calculations of fri,j’s for orders with

ni = 1 and ξi = 1 in the following Theorem 5. Please refer
to Appendix B for the proof.
Theorem 5. For each order oi with ni = 1 and ξi = 1,
• if j ≤ r,
f
r
i,j = max

{
f
r
i,j+1, h

(
Sαi,j,1, f

max{j+ls−1,r}
i,min{j+ls,r+1}

)
, h
(
Sγ
i,j,1

, f
li−j+1
s,r−j+2

)}
,

• if r < j < li,
f
r
i,j =max

{
f
r
i,j+1, w

(
Sαi,j,1, f

j+max{ls,lt}−1

i,j+min{ls,lt}

)
, h
(
Sαi,j,1, f

j+ls−1
i,j+1

)
,

h
(
Sαi,j,2, f

j+ls−1
i,j+ls

)
, h
(
Sγ
i,j,1

, f
li−j+1
s,1

)
, h
(
Sγ
i,j,2

, f
li−j+1

s,li−j+2

)}
,

• otherwise,

f
r
i,j =max

{
h
(
Sup , f

0
s,1

)
, w
(
Sαi,j,1, f

j+max{ls,lt}−1

i,j+min{ls,lt}

)
, h
(
Sαi,j,1, f

j+ls−1
i,j+1

)
,

h
(
Sαi,j,2, f

j+ls−1
i,j+ls

)
, h
(
Sγ
i,j,1

, f
li−j+1
s,1

)
, h
(
Sγ
i,j,2

, f
li−j+1

s,li−j+2

)}
.

Given an order graph G, we use D to denote the vertices’
largest out-degree, N to denote the number of orders, and K to
denote the length of the longest order path. Next, we provide
the computational complexity of Algorithm 2 in Theorem 6.

Theorem 6. The computational complexity of Algorithm 2 is
O
(
D2K|V|

)
.

As Algorithm 1 has no more than N iterations, it thus has
the computational complexity given in Corollary 4.
Corollary 4. The computational complexity of Algorithm 1 is
O
(
D2KN |V|

)
.

V. ONLINE DTC PROBLEM

Combining Algorithms 1 and 2, we could well address the
DTC problem in the offline setting, where order information is
a priori known. However, in real-world MoD systems, orders
typically arrive in an online manner, and the platform usually
has limited information on future orders.

In this section, we augment the LTF-DTC algorithm for the
online setting, where the platform makes dispatching decisions
at the beginnings of a series of equal-length time windows,
denoted as W = {1, 2, · · · ,W}, and it only has information
of orders in the current and past time windows. Note that the
length of a time window typically equals to multiple time slots.

In such online setting, the DTC problem still aims to min-
imize the number of vehicles needed over the entire planning
horizon. We formally describe the online LTF-DTC (o-LTF-
DTC) algorithm in the following Algorithm 3.

Algorithm 3: The Online LTF-DTC Algorithm
Input: order graph Gi, previous DT cover Fi−1;
Output: new DT cover Fi;

1 foreach τh ∈ Fi−1 do
2 bh ← the largest set of order paths in Gi that can be

added to τh together;
3 τh ← bh ∪ τh;
4 Vh ← the set of vertices of the order paths in bh;
5 Vi ← Vi \ Vh;
6 Ei ← Ei \

{
(vj,k, vp,q) ∈ Ei|vj,k ∈ Vh or vp,q ∈ Vh

}
;

7 if Gi is empty then
8 F̂ ← ∅;
9 break;

10 if Gi is not empty then
11 F̂ ←the output of Algorithm 1 over the graph Gi.

12 Fi ← Fi−1 ∪ F̂ ;
13 return Fi;

The o-LTF-DTC algorithm runs at the beginning of each
time window wi ∈ W . Algorithm 3 takes as input the order
graph Gi consisting of the orders which start in time window
wi and the DT cover Fi−1 = {τ1, τ2, · · · , τn} of the previous
time windows. For each dispatching tree τh in Fi−1, the
algorithm searches the largest set of order paths in Gi that can

be added to τh together (line 2) using a dynamic programming-
based method similar to Algorithm 2 with minor adaptations.
Then, it includes bh into τh, deletes all the vertices in bh and
the edges incident to them from Gi (line 3-6). If Gi becomes
empty in any iteration, the loop terminates immediately, and
the new dispatching tree set F̂ is set as empty, as no extra
vehicles are needed (line 7-9). Otherwise, the loop terminates
after all dispatching trees in Fi−1 have been considered. Then,
if there still exist order paths in Gi, the algorithm decides the
new vehicles to cover them by running Algorithm 1 (line 10-
11). Finally, we add the new dispatching trees F̂ to the Fi−1
to get the new DT cover Fi, and return Fi (line 12-13).

The idea behind Algorithm 3 is that we first dispatch as
many orders as possible to existing vehicles. However, if there
exist some orders unable to be served by them, we dispatch
new vehicles. For the city-scale computation, Algorithm 3 can
be easily run in a distributed way, where the whole city can
be divided into several small regions using some machine-
learning based clustering algorithms, such as hierarchical
clustering [16–18] and each region runs the algorithm itself.
Therefore, Algorithm 3 can be readily adapted to cope with the
scenarios with stricter constraints on computational efficiency.

VI. EXPERIMENTS

A. Experiment Setups

1) Dataset: We conduct experiments with a city-scale taxi
order dataset, containing over 21 million orders in Shenzhen,
China, from June 1st to 30th, 2017. Each piece of data contains
time, car ID, order ID, and current longitude and latitude.
Although the dataset lacks the passengers’ willingness to share
the vehicle and the number of passengers of each order, it truly
reflects the urban mobility demands. In our experiments, we
randomly assign values to each order oi’s ni and ξi.

2) Graph Construction: With the GPS coordinates, we
divide Shenzhen into 1km × 1km grids. The length of each
time slot is set to be 1 minute. With such settings, we
construct order graphs for our experiments, where each order
is shareable with at least one order, whereas the orders in the
sparse order graphs are chosen randomly from our dataset.

3) Baseline Algorithm: We introduce a competitive yet in-
tuitive baseline First-Shareable-Order-First (FSOF) algorithm,
which works as follows. (i) If a vehicle is serving orders, it
will immediately pick up any order that is shareable with the
ones being served. Otherwise, it will pick up the latest servable
order received by the platform. If there are multiple servable
orders at the same time, the platform will assign one of them to
the vehicle uniformly at random. (ii) Repeatedly add vehicles
by policy (i) until all the orders are served. Note that the online
and offline versions of FSOF are exactly the same, because the
decisions for each vehicle do not rely on future information.

As the DTC problem is NP-hard, it is computationally
expensive to find its optimal solution. For example, even if
an order graph has only 10 orders, the size of the feasible
dispatching tree set D is in the order of 210, and thus the
complexity to search for the optimal solution is in the order
of 21024. It indicates that finding the optimal solution even for

a small-scale problem is computationally intractable, let alone
in the city scale. Therefore, we omit the comparison between
our LPF-DTC algorithm and the optimal solution. Moreover,
we are not able to compare with algorithms in past literatures,
as no existing works study exactly the same problem as ours.

B. Experiment Results
1) Evaluation for the 3-DTC Problem: We first consider a

special case of the DTC problem, namely the 3-DTC problem
where each order oi has only one passenger (i.e., ni = 1).

In Figure 4, we compare LTF-DTC with FSOF in an order
graph derived from our dataset, respectively. We can observe
that the number of vehicles needed by LTF-DTC increases
only very slightly after the number of orders reaches 4000. In
contrast, the result of FSOF increases almost linearly. When
the number of orders reaches 9000, the number of vehicles
needed by LTF-DTC is only 21% of that of FSOF.

In Figure 6, we vary the percentage of ridesharing orders
from 0% to 100%, and the numbers given by both LTF-DTC
and FSOF decrease as such percentage increases. Although
the gap between them is not obvious at first, LTF-DTC still
has a huge improvement compared with FSOF in most cases.
Specifically, when the percentage of ridesharing orders reaches
100%, LTF-DTC only uses 52% vehicles needed by FSOF.

1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of Orders

500

1000

1500

2000

2500

3000

3500

N
u

m
b

e
r
 o

f
V

e
h

ic
le

s

LTF-DTC

FSOF

Fig. 4: 3-DTC.

1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of Orders

1000

2000

3000

4000

5000

N
u

m
b

e
r
 o

f
V

e
h

ic
le

s

LTF-DTC

FSOF

Fig. 5: General DTC (dense).

0 20 40 60 80 100

 (%)

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
u

m
b

e
r
 o

f
V

e
h

ic
le

s

LTF-DTC

FSOF

Fig. 6: 3-DTC (vary the percentage of
ridesharing orders).

2000 4000 6000 8000 10000

Number of Orders

400

600

800

1000

1200

1400

1600

N
u

m
b

e
r
 o

f
V

e
h

ic
le

s

1:1:1

5:3:2

2:2:1

Fig. 7: General DTC (vary the distri-
bution of passenger number).

2 4 6 8 10

Time Window Length (minutes)

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

N
u

m
b

er
 o

f
V

eh
ic

le
s LTF-DTC

FSOF

Fig. 8: Online DTC (5,000 orders).

2 4 6 8 10

Time Window Length (minutes)

1000

1500

2000

2500

3000

3500

4000

N
u

m
b

er
 o

f
V

eh
ic

le
s

LTF-DTC

FSOF

Fig. 9: Online DTC (10,000 orders).

2) Evaluation for the General DTC Problem: We evaluate
LTF-DTC for the general DTC problem, where we assign each
order’s passenger number which ranges from 1 to 3 randomly.

Figure 5 compare LTF-DTC with FSOF with uniformly
distributed passenger numbers. Figure 5 has a similar trend

as Figure 4, and shows that LTF-DTC needs about one fifth
vehicles needed by FSOF, when the overall order number
reaches 9,000.

We then vary the distribution each order’s passenger num-
bers in the dense order graph setting, and show the results in
Figure 7, where legend x : y : z denotes the ratio of orders
with 1, 2, and 3 passengers, respectively. This figure shows
a rough trend of growth in the vehicle numbers with higher
percentage of orders with 2 or 3 passengers. Moreover, the
difference of the results under different distributions is slight,
which shows the robustness of our LTF-DTC algorithm.

3) Evaluation for the Online DTC Problem: We now eval-
uate our online LTF-DTC algorithm with 5,000 and 10,000
orders that are densely sharable from the dataset.

Figures 8 and 9 show the results with the time window
varying from 1 to 10 minutes, indicating that a longer time
window is more beneficial to online LTF-DTC’s performance.
However, even in the worst case where a time window lasts 1
minute, our algorithm still outperforms FSOF by 17.6% in the
setting with 5,000 orders. When a time window equals to 10
minutes, our algorithm outperforms FSOF by at least 39.1%.
We can observe a wider performance gap between online LTF-
DTC and FSOF when the order number equals to 10,000,
where LTF-DTC outperforms FSOF stably by at least 54.1%.

VII. RELATED WORK

Optimizing MoD systems [13,19–22] has always been an
imperative research topic since its introduction by companies
like Uber and DiDi. Also, ridesharing is a voguish research
topic [3,4,6,23,24]. Much efforts have been made to lay basis
for optimizing ridesharing systems [25–28].

The economic aspect of MoD systems has been studied by
a wide variety of researches [1,8,29–35]. Most of them focus
on pricing [1,29–31] to maximize the profits of MoD systems.
[31] provides the economics insights of car-pooling with self-
driving cars. Apart from the pure economic aspect, our work
focuses on minimizing the number of vehicles while satisfying
all the mobility demands, which brings benefits for the whole
society as well as cuts budget for MoD service providers.

Except for the economic aspect, optimization for routing
[3,36] and order dispatch [6–9] in a ridesharing system is
another widely investigated research topic. Among the algo-
rithms for order dispatching, various settings, such as on-
demand order dispatching [6,7], order dispatching with auc-
tions [8], and dynamic dispatching [9], have been studied. Joint
optimization of order dispatch and routing has been addressed
by a probabilistic framework [4]. With the great advances in
machine learning, deep learning and reinforcement learning
approaches are proposed to solve routing [37] and order
dispatching [2,38–40] problems. However, the above existing
prior works take different objectives form ours which aims
at using the minimal number of vehicles to satisfy heteroge-
neous mobility demands. Besides, the machine-learning based
methods usually do not come with complete interpretability of
their results, whereas our work provides rigorous theoretical
analysis of the performance bounds of our algorithms.

Note that a previous work [5] has addressed the minimum
fleet problem for traditional ridesharing-free taxi systems.
However, the minimum fleet problem for ridesharing-aware
MoD systems with heterogeneous mobility demands inves-
tigated in this paper is theoretically fundamentally different
from the minimum taxi fleet problem, and thus makes the
methods proposed in [5] inapplicable in our problem setting.

VIII. CONCLUSION

In this paper, we address the fundamental problem in
ridesharing-aware MoD systems of how to serve urban res-
idents’ heterogeneous transportation demands with as few ve-
hicles as possible. We use graph-theoretic methods to construct
an efficient and realistic model considering various real-world
factors and formulate our problem into a tree cover problem,
different from the traditional coverage problems. Theoretically,
we prove the tree cover problem is NP-hard. In order to solve
it, we propose a dynamic programming-based polynomial-time
algorithm with a guaranteed approximation ratio. Furthermore,
we address the online fleet minimization problem, where
orders arrive sequentially in an online manner. Experimentally,
extensive experiments both for the online and offline problem
on a city-scale dataset from Shenzhen containing 21 million
passenger orders from July 1st to 30th, 2017, validate the
effectiveness of our algorithms.

ACKNOWLEDGEMENT

This work was supported in part by National Key R&D
Program of China 2018AAA0101200, in part by NSFC
China (No. 61902244, U20A20181, 61960206002, 61822206,
62020106005, 61829201, 62041205, 61532012), in part by
Shanghai Municipal Science and Technology Commission
Grant 19YF1424600.

APPENDIX A

Proof of Theorem 4. If ni = 2 and ξi = 1, order oi can only
share a vehicle with the orders that have one passenger. If
j ≤ r, there must have been three passengers in the vehicle
that is serving order oi already. Thus, we have fri,j = 0.
j > r corresponds to the scenario where any order sharing

the vehicle with oi at the first r time slots has been dropped off.
Then, due to the capacity constraints, it can only pick up an
order oq that is either a ridesharing order with one passenger,
or a successional order. Thus, we calculate fri,j in four cases.
• Case 1 (oq ∈ Sαi,j,1): After being picked up, oq will share

the vehicle with oi in the next lq time slots, so the vehicle
cannot serve any new order until ti,j+lq . Thus, we have

fri,j = 1 + max
s:os∈Sαi,j,1

fj+ls−1
i,j+ls

,

and q = argmaxs:os∈Sαi,j,1 f
j+ls−1
i,j+ls

.
• Case 2 (oq ∈ Sγi,j,1): After oq is picked up, the dominating

order changes from oi to oq . Only after dropping off oi at
ti,li−j+2 can the vehicle pick up new orders. Thus, we have

fri,j = 1 + max
s:os∈Sγi,j,1

f
li−j+1
s,li−j+2,

and q = argmaxs:os∈Sγi,j,1 f
li−j+1
s,li−j+2.

• Case 3 (j < li, no order pick-up): In this case, fri,j = fri,j+1.

• Case 4 (j = li, oq ∈ Sui): In this case, the vehicle is assigned
an order successional to oi. Then, the value of fri,j is

fri,j = 1 + max
s:os∈Sui

f0s,1,

and q = argmaxs:os∈Sui f
0
s,1.

Since we are searching the largest dispatching tree, for r <
j < li, fri,j is chosen to be the largest among Cases 1-3, i.e.,

fri,j = max

{
fri,j+1, h

(
Sαi,j,1, f

j+ls−1
i,j+ls

)
, h
(
Sγi,j,1, f

li−j+1
s,li−j+2

)}
.

When j = li, Case 4 replaces Case 3.
APPENDIX B

Proof of Theorem 5. If j ≤ r, order oi is sharing a vehicle
with some other order op which will not get off until time slot
ti,r. Thus, if the vehicle can still pick up a new order oq , both
op and oq can have only one passenger. Then, we calculate
fri,j respectively in the 3 cases: oq ∈ Sαi,j,1, oq ∈ Sγi,j,1 and no
order pick-up. As it is very similar to the proof of Theorem
4, we directly have if j ≤ r,
fri,j = max

{
fri,j+1, h

(
Sαi,j,1, f

max{j+ls−1,r}
i,min{j+ls,r+1}

)
, h
(
Sγi,j,1, f

li−j+1
s,r−j+2

)}
.

j > r corresponds to the scenario where there is only oi in
the vehicle. Then, the vehicle can pick up at most two orders
oq and og . Thus, fri,j is calculated in the following 7 cases.
• Case l1 (oq, og ∈ Sαi,j,1): The vehicle cannot take new orders

until either oq or og gets off, and oi shares the vehicle with
one of them until time slot ti,j+max{lq,lg}−1. Thus, we have

fri,j = 2 + max
(s,t):os,ot∈Sαi,j,1

f
j+max{ls,lt}−1
i,j+min{ls,lt}

,

and (q, g) = argmax(s,t):os,ot∈Sαi,j,1 f
j+max{ls,lt}−1
i,j+min{ls,lt} .

• Case l2 (oq ∈ Sαi,j,1): In this case, after picking up oq , the
vehicle can still pick up orders in the next time slot, and oi
will share the vehicle until time ti,j+lq+1. Thus, we have

fri,j = 1 + max
s:os∈Sαi,j,1

fj+ls−1
i,j+1 ,

and q = argmaxs:os∈Sαi,j,1 f
j+ls−1
i,j+1 .

• Case l3 (oq ∈ Sαi,j,2): In this case, the vehicle cannot pick
up any new order until the time slot ti,j+lq . Thus, we have

fri,j = 1 + max
s:os∈Sαi,j,2

fj+ls−1
i,j+ls

,

and q = argmaxs:os∈Sαi,j,2 f
j+ls−1
i,j+ls

.
• Case l4 (oq ∈ Sγi,j,1): oq becomes the dominating order, and

it shares its first li− j+1 time slots with oi. Thus, we have
fri,j = 1 + max

s:os∈Sγi,j,1
f
li−j+1
s,1 ,

and q = argmaxs:os∈Sγi,j,1 f
li−j+1
s,1 .

• Case l5 (oq ∈ Sγi,j,2): Different from Case l4, the vehicle
can only pick up new orders from ti,li−j+2. Thus, we have

fri,j = 1 + max
s:os∈Sγi,j,2

f
li−j+1
s,li−j+2,

and q = argmaxs:os∈Sγi,j,2 f
li−j+1
s,li−j+2.

• Case l6 (j < li, no order pickup): In this case, fri,j = fri,j+1.
• Case l7 (j = ls, oq ∈ Sui): In this case, the vehicle is

assigned an order successional to oi. Therefore, we have
fri,j = 1 + max

s:os∈Sui
f0s,1,

and q = argmaxs:os∈Sui f
0
s,1.

For r < j < li, we update fri,j by the maximum value over
Case l1-l6. Thus, we have
f
r
i,j = max

{
f
r
i,j+1, w

(
Sαi,j,1, f

j+max{ls,lt}−1

i,j+min{ls,lt}

)
, h
(
Sαi,j,1, f

j+ls−1
i,j+1

)
,

h
(
Sαi,j,2, f

j+ls−1
i,j+ls

)
, h
(
Sγi,j,1, f

li−j+1
s,1

)
, h
(
Sγi,j,2, f

li−j+1
s,li−j+2

)}
.

Case l7 replaces Case l6, when j = li.

REFERENCES

[1] C. Courcoubetis and A. Dimakis, “Throughput and pricing of ridesharing
systems,” in INFOCOM, 2019.

[2] T. Oda and C. Joe-Wong, “Movi: A model-free approach to dynamic
fleet management,” in INFOCOM, 2018.

[3] Q. Lin, L. Dengt, J. Sun, and M. Chen, “Optimal demand-aware ride-
sharing routing,” in INFOCOM, 2018.

[4] Q. Lin, W. Xu, M. Chen, and X. Lin, “A probabilistic approach for
demand-aware ride-sharing optimization,” in MOBIHOC, 2019.

[5] M. M. Vazifeh, P. Santi, G. Resta, S. H. Strogatz, and C. Ratti,
“Addressing the minimum fleet problem in on-demand urban mobility,”
Nature, vol. 557, no. 7706, pp. 534–538, 2018.

[6] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus,
“On-demand high-capacity ride-sharing via dynamic trip-vehicle assign-
ment,” Proceedings of the National Academy of Sciences, 2017.

[7] Y. Liu, W. Skinner, and C. Xiang, “Globally-optimized realtime supply-
demand matching in on-demand ridesharing,” in WWW, 2019.

[8] L. Zheng, P. Cheng, and L. Chen, “Auction-based order dispatch and
pricing in ridesharing,” in ICDE, 2019.

[9] X. Bei and S. Zhang, “Algorithms for trip-vehicle assignment in ride-
sharing,” in AAAI, 2018.

[10] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in ICLR, 2018.

[11] C. Zheng, X. Fan, C. Wang, and J. Qi, “Gman: A graph multi-attention
network for traffic prediction,” in AAAI, 2020.

[12] A. Baggag, S. Abbar, A. Sharma, T. Zanouda, A. Al-Homaid, A. Mohan,
and J. Srivasatava, “Learning spatiotemporal latent factors of traffic via
regularized tensor factorization: Imputing missing values and forecast-
ing,” IEEE Transactions on Knowledge and Data Engineering, 2019.

[13] Y. Guan, A. M. Annaswamy, and H. E. Tseng, “A dynamic routing
framework for shared mobility services,” ACM Transactions on Cyber-
Physical Systems, 2019.

[14] P.-J. Wan, D.-Z. Du, P. Pardalos, and W. Wu, “Greedy approximations
for minimum submodular cover with submodular cost,” Comput. Optim.
Appl., vol. 45, p. 463474, Mar. 2010.

[15] M. R. Garey and D. S. Johnson, “Computers and intractability: A guide
to the theory of np-completeness,” 1978.

[16] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika,
vol. 32, no. 3, pp. 241–254, 1967.

[17] D. Ghoshdastidar, M. Perrot, and U. von Luxburg, “Foundations of
comparison-based hierarchical clustering,” in NeurlIPS, 2019.

[18] A. Abboud, V. Cohen-Addad, and H. Houdrougé, “Subquadratic high-
dimensional hierarchical clustering,” in NeurlIPS, 2019.

[19] S. Jiang, L. Chen, A. Mislove, and C. Wilson, “On ridesharing compe-
tition and accessibility: Evidence from uber, lyft, and taxi,” in WWW,
2018.

[20] T. Séjournè, S. Samaranayake, and S. Banerjee, “The price of fragmen-
tation in mobility-on-demand services,” SIGMETRICS, 2018.

[21] S. Guo, C. Chen, J. Wang, Y. Liu, K. Xu, D. Zhang, and D. M. Chiu, “A
simple but quantifiable approach to dynamic price prediction in ride-on-
demand services leveraging multi-source urban data,” IMWUT, 2018.

[22] E. Wang, R. Ding, Z. Yang, H. Jin, C. Miao, L. Su, F. Zhang, C. Qiao,
and X. Wang, “Joint charging and relocation recommendation for e-taxi
drivers via multi-agent mean field hierarchical reinforcement learning,”
IEEE Transactions on Mobile Computing, 2020.

[23] T. Kumsila and S. Phithakkitnukoon, “Jerney: A peer-to-peer shared
public transit on fixed routes,” in IMWUT, 2018.

[24] C. Liu, J. Sun, H. Jin, M. Ai, Q. Li, C. Zhang, K. Sheng, G. Wu,
X. Qie, and X. Wang, “Spatio-temporal hierarchical adaptive dispatching
for ridesharing systems,” in SIGSPATIAL, 2020.

[25] J. J. Pan, G. Li, and J. Hu, “Ridesharing: Simulator, benchmark, and
evaluation,” VLDB, 2019.

[26] D. Zhang, T. He, F. Zhang, M. Lu, Y. Liu, H. Lee, and S. H. Son, “Car-
pooling service for large-scale taxicab networks,” ACM Transactions on
Sensor Networks, 2016.

[27] F. Bistaffa, J. Rodrı́guez-Aguilar, J. Cerquides, and C. Blum, “A simu-
lation tool for large-scale online ridesharing,” AAMAS, 2018.

[28] L. Chen, Y. Gao, Z. Liu, X. Xiao, C. S. Jensen, and Y. Zhu, “Ptrider:
A price-and-time-aware ridesharing system,” VLDB, 2018.

[29] L. Chen, Q. Zhong, X. Xiao, Y. Gao, P. Jin, and C. S. Jensen, “Price-
and-time-aware dynamic ridesharing,” ICDE, 2018.

[30] H. Ma, F. Fang, and D. C. Parkes, “Spatio-temporal pricing for rideshar-
ing platforms,” EC, 2018.

[31] M. Ostrovsky and M. Schwarz, “Carpooling and the economics of self-
driving cars,” in EC, 2019.

[32] Z. Fang, L. Huang, and A. Wierman, “Loyalty programs in the sharing
economy: Optimality and competition,” in MOBIHOC, 2018.

[33] Z. Fang, L. Huang, and A. Wierman, “Prices and subsidies in the sharing
economy,” in WWW, 2017.

[34] K. Bimpikis, O. Candogan, and D. Saban, “Spatial pricing in ride-
sharing networks,” Operations Research, 2019.

[35] S. Guo, C. Chen, J. Wang, Y. Liu, K. Xu, Z. Yu, D. Zhang, and
D. M. Chiu, “Rod-revenue: Seeking strategies analysis and revenue
prediction in ride-on-demand service using multi-source urban data,”
IEEE Transactions on Mobile Computing, vol. 19, no. 9, 2020.

[36] A. Braverman, J. G. Dai, X. Liu, and L. Ying, “Empty-car routing in
ridesharing systems,” Operations Research, 2019.

[37] Z. T. Qin, J. Tang, and J. Ye, “Deep reinforcement learning with
applications in transportation,” KDD, 2019.

[38] S. He and K. G. Shin, “Spatio-temporal capsule-based reinforcement
learning for mobility-on-demand network coordination,” in WWW, 2019.

[39] M. Li, Z. Qin, Y. Jiao, Y. Yang, J. Wang, C. Wang, G. Wu, and J. Ye,
“Efficient ridesharing order dispatching with mean field multi-agent
reinforcement learning,” in WWW, 2019.

[40] Z. Xu, Z. Li, Q. Guan, D. Zhang, Q. Li, J. Nan, C. Liu, W. Bian, and
J. Ye, “Large-scale order dispatch in on-demand ride-hailing platforms:
A learning and planning approach,” in KDD, 2018.

