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Abstract—Nowadays, crowdsourcing has become an increas-
ingly popular paradigm for large-scale data collection, annota-
tion, and classification. Today’s rapid growth of crowdsourcing
platforms calls for effective worker selection mechanisms, which
oftentimes have to operate with a priori unknown worker relia-
bility. We discover that the empirical entropy of workers’ results,
which measures the uncertainty in the final aggregated results,
naturally becomes a suitable metric to evaluate the outcome of
crowdsourcing tasks. Therefore, this paper designs a worker
selection mechanism that minimizes the empirical entropy of
the results submitted by participating workers. Specifically, we
formulate worker selection under sequentially arriving tasks as
a combinatorial multi-armed bandit problem, which treats each
worker as an arm, and aims at learning the best combination of
arms that minimize the cumulative empirical entropy. By infor-
mation theoretic methods, we carefully derive an estimation of
the upper confidence bound for empirical entropy minimization,
and leverage it in our minimum entropy upper confidence bound
(ME-UCB) algorithm to balance exploration and exploitation.
Theoretically, we prove that ME-UCB has a regret upper bound
of O(1), which surpasses existing submodular UCB algorithms.
Our extensive experiments with both a synthetic and real-world
dataset empirically demonstrate that our ME-UCB algorithm
outperforms other state-of-the-art approaches.

I. INTRODUCTION

Recently, crowdsourcing has emerged as a cheap yet ef-
fective paradigm for soliciting useful information from the
public crowd to accomplish a wide spectrum of tasks (e.g.,
image labelling, sentiment analysis, entity resolution) that
were traditionally conducted by the specialized few. A typical
crowdsourcing system is operated by an online crowdsourcing
platform such as Amazon Mechanical Turk (AMT)1, which
matches workers with tasks, and remunerates them based on
their efforts and performances. Nowadays, due to the surging
demands for big data, the need for crowdsourcing inevitably
increases significantly. Reportedly, around 50,000 new workers
join AMT each year2. While such expansion brings more
popularity and diversity to the platforms, it also calls for more
efficient algorithms to properly match the workers and tasks.

Thus far, many prior works [1–13] have devoted efforts
in worker recruitment for crowdsourcing. However, today’s
crowdsourcing systems still face a fundamental unsolved
problem of how to select the proper set of workers with a
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priori unknown worker reliability. Usually in practice, worker
reliability is affected by a variety of complicated real-world
factors, such as expertise, effort level, as well as many others,
and is thus difficult to be precisely estimated when the worker
joins the platform. Without such reliability information, it is
challenging for the platform to select the set of workers that
will finish crowdsourcing tasks with satisfactory quality.

To address this problem, we propose to adopt the empirical
entropy of workers’ results as a measurement of the execution
quality of crowdsourcing tasks. As described in information
theory, the concept of information entropy evaluates the uncer-
tainty of a random variable given the probability distribution
of it. Empirical entropy, on the other hand, measures the
uncertainty of a set of sampled values of a random variable. In
a crowdsourcing system, as long as a fair number of workers
return relatively accurate results, minimizing the empirical en-
tropy could help gain more confidence in the final aggregated
results, and thus improve the task execution quality. Therefore,
in this paper, we take the perspective of the crowdsourcing
platform, and aim at designing a worker selection mechanism
that minimizes the empirical entropy of workers’ results.

In practice, a crowdsourcing platform oftentimes has to deal
with sequentially arriving tasks that need to be completed
timely. Naturally, such sequential arrival combined with tasks’
real-time execution requirements makes the platform operate
in a round-based manner, in which a set of workers is selected
in each round to execute the crowdsourcing tasks that arrive
in the same round. Under such setting, the platform will have
to effectively balance the exploration for new workers and
exploitation for experienced ones, which is rather challenging
to achieve. To tackle this challenge, we formulate the worker
selection problem as a combinatorial multi-armed bandit (C-
MAB) problem, which treats each worker as an arm, and
aims to learn the best combination of arms that minimize the
cumulative empirical entropy.

Although there already exist a vast body of literatures
[14–17] addressing C-MAB problems under various contexts,
directly applying them in our problem setting does not nec-
essarily guarantee the best performance. In fact, our objective
function of minimizing the empirical entropy is submodular
in nature, which thus makes our C-MAB problem belong
to the family of submodular bandit problems. Traditional
submodular bandit algorithms [18, 19] are well-known to
guarantee a O(

√
T ) regret upper bound given RKHS kernels of



the submodular function. However, these algorithms are with
high computational complexity, which oftentimes involve a
large amount of matrix multiplications, and the RKHS kernel
for the empirical entropy function is hard to determine as well.

Therefore, we augment the widely adopted Upper Confi-
dence Bound (UCB) approach to obtain our minimum entropy
UCB (ME-UCB) algorithm, which selects arms according
to the past empirical rewards and a careful estimation of
the upper bound of the confidence. Specifically, we fully
capture the relationships between the empirical entropy and the
actual information entropy by information theoretic methods,
and integrate in ME-UCB a tighter estimation of the upper
confidence bound for empirical entropy minimization. Our
theoretical analysis shows that ME-UCB guarantees O(1)
regret bound with a lower computational complexity compared
with existing UCB methods.

In summary, our main contributions are listed as follows.
• We introduce empirical entropy as the metric for worker se-

lection in crowdsourcing systems, and formulate the worker
selection problem as a combinatorial multi-armed bandit
problem that minimizes the cumulative empirical entropy.

• We design an efficient online minimum entropy UCB (ME-
UCB) algorithm to address the worker selection problem.
Moreover, we theoretically prove that the algorithm has a
regret upper bound of O(1), which surpasses any general
submodular UCB algorithms.

• We conduct extensive experiments on both a synthetic and
a real-world crowdsourcing dataset. Our experiment results
show that our ME-UCB algorithm outperforms state-of-the-
art baseline algorithms in most cases.
The organization of this paper is as follows. In Section II, we

survey state-of-the-art works about C-MAB and worker selec-
tion in crowdsourcing. In Section III, we introduce our system
model and formulation for the worker selection problem. Then,
we introduce a novel ME-UCB algorithm and theoretically
evaluate its performance in Section IV. Finally, we carry out
experiments both randomly-generated and real-world dataset
in Section V, and conclude the paper in Section VI.

II. RELATED WORK

Based on studies about stochastic bandits [20–24], algo-
rithms have been proposed for C-MAB recently. The most
common methods for Gaussian or linear C-MABs are UCB-
based algorithms [14–17], and they all achieve O(log(T ))
regret bounds. Based on the result for C-MAB, more general
assumptions have been made when the reward function is
submodular. [18] proposed SM-UCB, which applies an RKHS
kernel to estimate the regret upper bound according to a
Gaussian bandit, and derived an upper bound of O(

√
T ). After

that, more general assumptions are made about contextual in-
formation and volatile arms, and CC-MAB is proposed in that
scenario [19]. CC-MAB also achieves O(

√
T ) regret bound

when Holder continuity holds about the reward function. In
this work, we propose a UCB-based algorithm and achieves
an O(1) regret upper bound, which is better than the general
methods proposed in theoretical works [18, 19].

As the problem of worker selection or recruitment in
crowdsourcing systems can be easily formulated as a C-
MAB problem, most previous works focusing on that area
develop bandit algorithms to solve that problem [1–6]. [1]
designs an algorithm for joint worker selection and payment
to balance the worker’s quality and budget control. [2] applies
UCB to estimate the quality of workers and then perform
task assignment, and thus provides a regret upper bound
of O(log T ). Then, [3] extends worker selection to a more
general objective, where the overall quality value can be a
nonlinear function of the worker’s reliability, while ensuring
the α-approximate regret bounded by O(NLK3 lnB), where
B,N and L are the budget, number of workers and number
of options respectively. However, [1–3] all suppose that we
can acquire the accurate value of each worker’s reliability
after each round, which is usually infeasible in practice. In
order to address the problem, [4, 5] use majority voting for
truth discovery, and introduce a (0,1) loss for workers defined
as whether the provided answers are the same as majority.
The method well solves the difficulty for defining accurate
performance, but can only work when the truth discovery
method is majority voting. Moreover, [6] further introduces
contextual information, where the workers carry information
about their potential performance when entering the platform,
and applies exploration-exploitation mechanism to solve the
task allocation problem. Different from these previous works,
we set the minimization of empirical entropy as objective,
which is compatible with any truth discovery methods, because
minimizing empirical entropy can be viewed as minimizing
uncertainty for the workers’ results.

Meanwhile, there are also other approaches aiming at ef-
ficient worker selection or task allocation for crowdsourcing
[7–13]. The works have different approaches, from developing
pricing mechanisms [7], to designing network optimization
algorithms [8–11], or applying learning-based techniques [12,
13] to match the workers with tasks with different objectives.
However, currently the non-bandit approaches to worker selec-
tion have not shown obvious advantage compared to bandit-
based algorithms. Rather, C-MAB can better model the worker
selection process, as it naturally involves balance between
exploration and exploitation of workers. Therefore, we still
develop a bandit-based algorithm that can nearly approach the
theoretical lower regret bound for entropy-minimization.

III. PRELIMINARIES

A. System Overview

We take into consideration a crowdsourcing system, where
a centralized cloud-based platform manages a crowd of W
participating workers, denoted as W = {1, 2, · · · ,W}. The
whole crowdsourcing procedure consists of T rounds, where
each round consists of a categorical classification task. The
potential answer for the task is drawn from a finite discrete set,
denoted asA. We assume that all tasks in the entire task belong
to the same domain and the worker answers tasks with stable
performance. For example, the platform asks the workers to
record the total car flow passing a road intersection in a time



slot, and the task repeats for T rounds. The set of possible
answers is {1, 2, · · · ,M}.

In each round, as depicted in Figure 1, the following
processes are performed.

2. Assign Task

Available WorkersCrowdsourcing Platform

3. Return Answers

1. Select Workers

4. Truth Discovery

Fig. 1: System model for a single round.

• Due to limited budget, each data collection round t requires
us to select a set of Nt workers, denoted as St, from the
set of workers that are available for the job, denoted as Wt.
Clearly, St is a subset of Wt and |St| = Nt.

• Then, the platform assigns assigns the task to the workers
St selected at the current round.

• After acquiring the task, each selected worker w finishes
their job and reports their answer atw to the platform among
a finite set of possible answers A. The answer atw by worker
w can be viewed as a random variable drawn from an
unknown multinomial distribution Πw. We let At denote
the collection of answers provided by the workers in St at
tth round, i.e., At = {atw : w ∈ St}.

• Finally, after collecting answers from the selected workers,
the platform aggregates their answers and outputs an answer
for the task by some truth discovery techniques [25–29].

B. Problem Description

While the method of truth discovery varies, we aim at min-
imizing the information uncertainty for the answers given by
the workers. We can evaluate the empirical entropy according
to the answers given by workers at the end of each round,
and then by applying the entropy-minimization algorithms
discussed in Section IV, we can select the workers so that
the overall uncertainty for answers could be minimized. The
empirical entropy can be formally defined as follows.

Definition 1. Provided the answer set At at round t, the
empirical entropy of At, Ĥ(At), is defined as follows3.

Ĥ(At) = −
p∑
k=1

∑
i∈St I{a

t
i = k}

Nt
log

∑
i∈St I{a

t
i = k}

Nt
, (1)

where I{·} is the indicator function with

I{x} =

{
1, x is true
0, otherwise

. (2)

Meanwhile, we can also define the entropy generated by a
set of workers as follows.

Definition 2. The entropy for a selected set of workers St is
defined as follows.

3If
∑
i∈St I{a

t
i = k} = 0, we omit that item, as lim

x→0
x log x = 0.

H(St) = −
p∑
k=1

∑
i∈St P{a

t
i = k}

Nt
log

∑
i∈St P{a

t
i = k}

Nt
. (3)

For generality, we allow that the available set of workers
is variable during the whole crowdsourcing process, but stay
fixed during one round of crowdsourcing task. Moreover, it is
worth noting that our system only focuses on selecting workers
and assigning tasks for a crowdsourcing platform, with the
privacy guarantee and worker incentive being independently
solved by present and futural works.

Our objective of minimizing the empirical entropy is equiva-
lent to maximizing the negative entropy so that the reward can
be positive in each round. From information theory, it is clear
that the entropy provided by uniform distribution, or random
guess, is larger than any other distributions. Therefore, we let
Π0 denote the uniform distribution, and define the negative
entropy as follows.

Definition 3. The negative entropy G(St) given the selected
workers St and the empirical negative entropy Ĝ(At) given
the answer set At are defined as follows.{

G(St) = H(Π0)−H(St) = log p−H(St)
Ĝ(At) = H(Π0)− Ĥ(At) = log p− Ĥ(At)

. (4)

C. Problem Formulation
During the entire data collection process, a sequence of

empirical negative entropies Ĝ(A1), Ĝ(A2), · · · , Ĝ(At) is at-
tained. Our objective is to maximize the overall expectation of
empirical negative entropy by selecting optimal combinations
of workers at each round. In short, the problem can be
formulated as the following optimization program.

max

T∑
t=1

E[Ĝ(At)] (5a)

s.t. ati ∼ Πi,∀i ∈ St, t ∈ {1, 2, · · · , T} (5b)
St ⊆ Wt, |St| = Nt,∀i ∈ St, t ∈ {1, 2, · · · , T} (5c)

Equation (5a) is the expectation of cumulative empirical
entropy. Equation (5b) indicates that the answers are drawn
from multinomial distributions, and Equation (5c) shows that
the selected set of workers must be among the available
workers, with cardinality Nt. Therefore, the problem of worker
selection is a sequential-decision problem, where we need to
balance the exploration and exploitation of different workers.
Thus, we can further formulate the problem as the entropy
minimization bandit (EM-MAB) in Definition 4.

Definition 4. The entropy-minimization bandit (EM-MAB)
problem can be formulated as follows.
• Arms. A worker w among the available set of workers Wt

can be viewed as an arm, and in each round t we need to
select a set of workers St. In our EM-MAB problem, St is
called a super arm.

• Round reward. The round reward is the negative entropy
Ĥ(At), which depends on the distributions Πi,∀i ∈ St. In
EM-MAB, we need to maximize the cumulative reward, i.e.,
the cumulative negative entropy shown in Equation (5a).



IV. ALGORITHM DESIGN AND ANALYSIS

As the problem of worker selection has been formulated as
an EM-MAB problem, a solution to EM-MAB can solve the
original worker recruitment problem consequently.

A. Greedy Algorithm

C-MAB problems with linear or Lipschitz-continuous re-
wards can be easily solved by various state-of-the-art algo-
rithms [14–17], either with or without a feedback of reward
for single arms. However, in this problem, due to the sub-
modularity of entropies, normal algorithms designed for linear
C-MAB problems cannot be directly applied.

An intuitive approach to the C-MAB problem with sub-
modular reward is the greedy algorithm. The main idea of
greedy algorithm is to repeatedly select the worker that pro-
vides greatest increment to the objective function until the
maximum allowable number of workers have been selected.
The increment for the negative entropy by each worker can be
easily defined by the difference between the negative entropy
in the current round and the negative entropy excluding the
worker’s result. We name the average increment caused by a
worker w until round t as the average reward for this worker,
denoted as µ̄w(t). It is defined as follows.

Definition 5. The average reward µ̄w(t) for worker w at time
slot t is

µ̄w(t) =
1

Tw(t)

t∑
j=1

Ĝ(At)− Ĝ(At \ {w}), (6)

where Tw(t) =
∑t
j=1 I(w ∈ At) means the number of times

worker w have been selected.

The greedy algorithm is shown in Alg. 1. We use two
online variables, µ̄w and Tw to record the average reward and
exploration times for each worker w, respectively. The average
reward µ̄w are initialize to be ∞ for each worker w to make
sure that each worker would be explored at least once. In each
round, we first sort the workers by µ̄w in decreasing order (line
3), and then select the top Nt workers as the worker set (line
4). After the selected workers return answers, we calculate the
round reward (line 6), and update µ̄w and Tw for each selected
workers (line 7-9).
Algorithm 1: Greedy Algorithm for Worker Selection

1 Initialize µ̄w ←∞, Tw ← 0,∀w ∈ W;
2 for t = 1 to T do
3 Sort Wt by µ̄w decreasingly;
4 Select top Nt workers in Wt as St;
5 Workers in St return answers At;
6 Calculate the round reward Ĝ(At);
7 foreach w ∈ St do
8 µ̄w ← Tw

Tw+1 µ̄w + 1
Tw+1 (Ĝ(At)− Ĝ(At \{x}));

9 Tw ← Tw + 1;

The main drawback of the greedy algorithm is that it can
easily fall into a local optimal. If a professional worker is
explored and the the first-round reward for the worker is very

low, then the worker probably will never be selected again.
Consequently, the optimal combination composed of several
professional workers will never be achieved, resulting in a
local optimal. Therefore, we design the ME-UCB algorithm
in the next section that solves the problem.

B. Minimum-Entropy Upper Confidence Bound Algorithm

Upper confidence bound (UCB) algorithm is a solution for
avoiding the local optimal of the greedy algorithm. The UCB
algorithm introduces an additive positive item for the average
reward of worker. Such additional item decreases over time,
meaning a confidence bound for the reward of the worker.

Recent researches [18, 19] have provided generalized UCB
algorithms for general submodular MABs provided the RKHS
kernel of the objective function. However, determining the
RKHS kernel for a submodular function is hard, and these
algorithms include massive matrix inversions and multiplica-
tions, causing tremendous computational complexity when the
number of workers and number of possible answers increases.

In order to address the EM-MAB efficiently and optimally,
we propose minimum-entropy upper confidence bound (ME-
UCB) algorithm, as shown in Alg. 2.

Algorithm 2: ME-UCB Algorithm for Worker Selec-
tion

1 Initialize µ̄w ←∞, Tw ← 0,∀w ∈ W;
2 for t = 1 to T do
3 foreach w ∈ Wt do
4 µ̂w ← µ̄w + β(t)

σ2
N (t)Tw

;

5 Sort Wt by µ̂w decreasingly;
6 Select top Nt workers in Wt as St;
7 Workers in St return answers At;
8 Calculate the round reward Ĝ(At);
9 foreach w ∈ St do

10 µ̄w ← Tw
Tw+1 µ̄w + 1

Tw+1 (Ĝ(At)− Ĝ(At \{x}));
11 Tw ← Tw + 1;

The difference between ME-UCB and the greedy algorithm
is that we design a particular upper confidence bound for the
negative entropy, β(t)

σ2
N (t)Tw

, where β(t) is a function of t shared
by all workers, and should strictly satisfy

β(t) ≤ t. (7)

For specific applications, β(t) can be set accordingly to
achieve the best performance. A larger β(t) indicates more
attention on confidence bound when selecting workers,i.e.,
exploration, and a smaller β(t) means more attention on
previous behavior, i.e., exploitation. Specifically, β(t) = 0
makes ME-UCB devolve to the greedy algorithm. σN is a
scalar related to the number of selected workers, defined as:

σ2
N (t) =

Nt − 1

32 log2(Nt − 1)
, (8)

and Tw is the number of times worker w has been chosen until
round t, as introduced before.



C. Performance Analysis

In 1998, U. Feige proved that for any submodular function
maximization problem, no polynomial-time algorithm can
achieve a better approximation than greedy algorithm [30],
and greedy algorithm gives an approximation ratio of 1−1/e.
In order to evaluate the efficiency of our algorithm, we denote
E[Ĝ(Sj)] = Ḡ(Sj), and define the regret R(T ) for the ME-
UCB algorithm as:

R(T ) =

T∑
j=1

(1− 1/e) ·OPTj − Ḡ(Sj). (9)

Without loss of generality, we suppose Nt = N . OPTj in
Equation (9) is the best expected result provided by a set of
workers with cardinality N at round j, i.e.,

OPTj = max
S∗∈Wj :|S∗|=N

Ḡ(S∗). (10)

As the workers are selected sequentially in one round, we
use Si,j to denote the first i workers that are selected in round
j, i.e., the workers with i largest µ̂w(t). Then, let xi+1,j denote
the i+1th worker to be selected in round j. Based on the work
by L. Chen, et al. [18], the regret can be upper bounded by
the Lemma 1.

Lemma 1. The regret w.r.t. T is bounded by

R(T ) ≤
T∑
j=1

RN,j =

T∑
j=1

N∑
i=1

ri,j , (11)

where
ri,j = sup

a
∆(a|Si,j)−∆(xi+1,j |Si,j), (12)

with
∆(a|Si,j) = Ḡ(Si,j ∪ {a})− Ḡ(Si,j). (13)

Proof. See Appendix A for proof.

As shown in the lemma, the overall regret can be bounded
by the cumulative difference of reward for workers between
the ME-UCB policy and the optimal greedy policy which has
ground truth for the probability distributions of the work-
ers’ selections. In order to bound the cumulative difference∑T
j=1

∑N
i=1 ri,j , we first show that the probability for the

difference between the real and empirical entropy can be
bounded by the value of a Gaussian tail distribution’s CDF.
Then, we can apply the CDF value to estimate the upper
bound for regret using the technique for bounding regrets for
Gaussian bandits [31, 32].

Derived from the relationship between two empirical en-
tropies, we have the following theorem that bounds the em-
pirical entropy from real entropy with some probability.

Theorem 1. For any set of workers τ , and for any ε ≥ 0, the
gap between empirical entropy and real entropy satisfies

P[H(τ)− Ĥ(τ) ≤ −ε] ≤ exp

(
− ε2N

8 log2N

)
,

and

P[H(τ)− Ĥ(τ) ≥ ε] ≤ exp

−
[
ε− log |T |+N−1

N

]2
N

8 log2 N

 .

Therefore, combining the above two inequalities can we
derive the following bound as

P[|H(τ)− Ĥ(τ)| ≤ ε] ≥ 1−

1

exp

(
− ε2N

8 log2 N

)
+ exp

−
[
ε− log |T |+N−1

N

]2
N

8 log2 N


 .

Proof. According to [33], for any set of workers τ , the
following relationship between Ĥ(τ) and H(τ) always holds.

E[Ĥ(τ)] ≥ H(τ),

and
lim
N→∞

E[Ĥ(τ)] = H(τ).

As shown in [34], let HD be the empirical entropy with N
samples, HS be a subsample of HD with M samples, with
probability at least 1− α, we have

HD ≥ HS −

√
8(N −M) log 1

α

MN
logM,

and with probability at least 1− α,

HD ≤HS +

√
8(N −M) log 1

α

MN
logM

+ log

(
1 +

(c− 1)(N −M)

M(N − 1)

)
.

where c is the number of choices. By taking N → ∞ and
applying HD → H , HS = Ĥ , the theorem holds.

According to Theorem 1, we have known the gap between
empirical entropy and real entropy. Then, we can estimate
the negative entropy gain for a worker after several times
of exploration in Lemma 2. We use Ĝ(τ) to denote the
single-step empirical entropy including a worker a, and Ĝ′(τ)
to denote the single-step entropy discarding the worker a.
Similarly, Ḡ(τ) means the average entropy including a worker
a, and Ḡ′(τ) means the average entropy discarding a. Let
µa = Ĝ(τ) − Ĝ′(τ), µ̃a = Ḡ(τ) − Ḡ′(τ), and µ̄a,s be the
average value of µa after s times of sampling.

Lemma 2. Multi-step error bound for a single worker a is

P(µa − µ̄a,s ≥ ε) ≤ exp

{
− (µN + εσ2

N s)
2

2σ2
N

}
, (14)

where

µN = log
|τ |+N − 1

N
, σ2
N =

N − 1

32 log2(N − 1)
, (15)

and N is sufficiently large.



Proof. Single step error between empirical entropy gain and
average entropy gain is bounded by

P(µa − µ̃a ≥ ε)
=P([Ĝ(τ)− Ĝ′(τ)]− [Ḡ(τ)− Ḡ′(τ)] ≥ ε)
=P([Ĝ(τ)− Ḡ(τ)] + [Ḡ′(τ)− Ĝ′(τ)] ≥ ε)

≤P
[
Ĝ(τ)− Ḡ(τ) ≥ δ

]
P
[
Ḡ′(τ)− Ĝ′(τ) ≥ ε− δ

]
,

As f(n) = n
log2(n)

is monotonic-increasing when n is large
(n ≥ 7 when the base is 2), and according to Theorem 1,

P
[
Ĝ(τ)− Ḡ(τ) ≥ δ

]
P
[
Ḡ′(τ)− Ĝ′(τ) ≥ ε− δ

]
≤ exp

{
− N − 1

8 log2(N − 1)

([
δ − log

|T |+N − 1

N

]2

+ [ε− δ]2
)}

≤ exp

{
− N − 1

16 log2(N − 1)

(
ε− log

|T |+N − 1

N

)2
}
,

when δ = 1
2

(
ε+ log |T |+N−1

N

)
and N is sufficiently large.

Thus, the tail of µa − µ̂a is upper bounded by a N (µN , σ
2
N )

normal distribution.
Therefore, multi-step error is bounded by

P(µa − µ̄a,s ≥ ε) ≤ E
(
eλ(µa−µ̄a,s)

)
e−λε

≤
∫ ∞
−∞

exp

{
− (x− µN )2 + 2λx/n

2σ2
N

− λε
}

dx

= exp

{
λ2 − 2λµN s

2σ2
N s

2
− λε

}
= exp

{
− (µN + εσ2

N s)
2

2σ2
N

}
,

where the large equality is because λ = −µN s−εσ2
N s

2.

Theorem 2. The regret of ME-UCB is upper bounded by

R(T ) ≤ |W|N
[

1

2ε
+ 2
√

2 ·
ε−∆max

i,k

σN

]
(16)

for any 0 < ε < 1.

Proof. See Appendix B for proof.

Therefore, the regret R(T ) for ME-UCB can be bounded by
a constant that is irrelevant to T . Compared to previous results,
which are usually O(

√
T ), our algorithm achieves better the-

oretical performance on maximizing the cumulative negative
entropy than general algorithms for submodular rewards.

V. EXPERIMENTS

We conduct experiments on both simulation environment
and a large-scale crowdsourcing dataset to validate our ME-
UCB algorithm.

A. Evaluation Methodology

a) Dataset: We use the RTE-6 dataset from National
Institute of Standards and Technology (NIST), U.S. [35]. The
RTE-6 dataset consists of human-labeled answers for binary-
classification textual entailment recognition tasks, and is made
publicly available. For each worker w, their probability of
answer selection is Πw = (p0, p1). We use p0 to denote the
probability of choosing the right answer, and p1 to denote the
probability of choosing the wrong answer. For each textual
entailment task, we use the majority voting to select the ground
truth, and calculate p0 and p1 for each worker.

Moreover, we also use randomly-generated data to compare
the performance of different algorithms.

b) Baseline Algorithm: We select several popular and
frequently-used general algorithms as our baselines. We in-
clude both algorithms for Gaussian combinatorial bandits and
an algorithm for combinatorial bandits with general rewards.
The algorithms are briefly introduced as follows.

• Greedy algorithm. The greedy algorithm has been in-
troduced in section IV-A. Due to its simplicity, it has
been widely used in general cases for sequential decisive
problems with submodular rewards.

• Gaussian UCB. Gaussian UCB is an upper-confidence
bound-based algorithm designed for both linear bandits or
combinatorial bandits. The expected reward with confidence
bound for each sub-arm (for combinatorial bandits) i at
round t is defined as follows.

µ̄i(t) = µ̂i(t− 1) +

√
2

Ti(t− 1)
log

1

δ
, (17)

where δ is a monotonic-decreasing function of t. In the test
case, we define 1

δ = 1 + t log2(t), which is value that is
widely adapted and achieves good result.

• SDCB [36]. Stochastically dominant confidence bound
(SDCB) is a lower-confidence bound-based algorithm de-
signed for combinatorial bandits with general reward func-
tions. After exploration for each worker for at least one time,
at the t-th round, for each arm i, it defines a distribution D̄i

with CDF F̄i(x) as follows.

F̄i(x) =

{
max

{
F̂i(x)−

√
3 ln t
2Ti

, 0
}
, 0 ≤ x < 1,

1, x = 1,
(18)

where F̂i(x) means the fraction of observed outcomes
from arm i that are no larger than x. At t-th round,
with the distributions for each arms, an oracle is adapted
to select a super arm St, i.e., St = Oracle(D̄), where
D̄ = D̄1 × D̄2 × · · · D̄N . In the test case, we use a
greedy oracle to select the arms from distributions, i.e.,
Oracle(D̄) = arg maxSt

∑
i∈St E(D̄i).

c) Empirical Regret: Although theoretical analysis show
that no algorithm achieves better than O(T ) approximation
ratio, the result only holds in the worst case. If we still define
regret as Equation (9), the regret would always be negative in



(a) P = 0.3 (b) P = 0.5 (c) P = 0.7 (d) P = 0.9

Fig. 2: Regret (R) w.r.t. Epoch (T ) with average correct probabilities (P = P[ai = 1]), when number of workers is 20, number of choices is 10, and in each
round 5 workers are selected.

(a) 10 workers (b) 15 workers (c) 20 workers (d) 25 workers

Fig. 3: Regret (R) w.r.t. Epoch (T ) with randomly-generated probabilities (P = P[ai = k]), when number of workers varies, number of choices is 10, and
in each round 5 workers are selected.

(a) 3 selected workers (b) 6 selected workers (c) 9 selected workers (d) 15 selected workers

Fig. 4: Regret (R) w.r.t. Epoch (T ) with randomly-generated probabilities (P = P[ai = k]), when number of selected workers varies, number of workers is
20, and number of choices is 10.

(a) 20 selected workers (b) 40 selected workers (c) 80 selected workers (d) 120 selected workers

Fig. 5: Performance gap between baseline algorithms and ME-UCB on RTE dataset when the number of selected workers varies.

most cases. Therefore, throughout our experiments, we define
the empirical regret R(T ) just by the traditional regret, as

R(T ) =

T∑
j=1

OPTj − Ḡ(Aj). (19)

Using the new empirical definition for regret, we can
perform the following evaluation for our algorithm.

B. Evaluation Result

Referring the usual UCB values for other UCB algorithms,
we set β(t) = 1

10

√
log(t). We first use randomly-generated

data to validate the performance of our ME-UCB algorithm.
In different scenarios, the average quality for the answers of
the workers may be different. Therefore, we generate several
sets of probability distributions for workers to represent the
difference in average qualities. Without loss of generality, we
let option 1 for each task be the ground truth, and suppose
that P[ai = 1] ≥ 1/p, where p is the number of options. The



assumption means that the workers all have some knowledge
about the field, and thus always provide answers that are
better than random guess, where P[ai = k] = 1/p. We vary
the value of P[ai = 1] and randomly generate the values
for P[ai = k], k 6= 1, and observe the performance gap
between different algorithms. Figure 2 shows the performance
for the four algorithms when the average correct probability,
denoted by P , varies from 0.3 to 0.9, when the number of
workers is fixed as 20, number of choices is 10, and in each
round 5 workers are selected. Results show that Gaussian
UCB algorithm and greedy algorithm usually perform the
worst, and our ME-UCB algorithm usually outperforms other
algorithms in different cases. Specifically, when the correct
probabilities for workers are low, the performance gap between
ME-UCB and other combinatorial bandit algorithms is large.
In contrast, when the correct probabilities become higher, the
regret for a wrong choice of worker becomes lower, and thus
the performance of different algorithms varies insignificantly.

Then we keep the average value for P[ai = 1] to be around
0.5, but randomly-generated, the number of choices to be 10,
and the number of selected workers in each round to be 5,
and vary the number of total workers. As shown in Figure
3, the performances of greedy algorithm, Gaussian UCB and
SDCB are all unstable, but the performance of ME-UCB is
very stable when the number of total workers varies and the
situation changes. The empirical regret is about O(log T ) by
observation and is rather stable across T .

Finally, we stick to 20 total workers, 10 choices and
randomly generated P[ai = 1] with average value 0.5, and vary
the number of selected workers. Figure 4 shows with different
number of selected workers, ME-UCB still outperforms other
3 baseline algorithms. SDCB performs well when the number
of selected workers is low, but is outperformed by Gaussian
UCB when we need to select more workers.

For the RTE dataset, the task is a binary classification
task and includes 164 workers. In this situation, finding the
optimal combination of workers is impossible, and we cannot
use regret to evaluate the performance of different algo-
rithms. Instead, we use the cumulative reward given by ME-
UCB algorithm, and compare the performance gap between
3 baseline algorithms and ME-UCB. The performance gap
is defined by

∑T
j=1 Ḡ(AME−UCB

j ) − Ḡ(Aj). Therefore, the
larger the performance gap is, the worse the performance
of the algorithm is. If the performance gap is negative, it
indicates that the performance for the current algorithm is
better than ME-UCB, and vice versa. If we observe Figure
5, we can come to the conclusion that in the long term, ME-
UCB is guaranteed to outperform all 3 baseline algorithms in
cumulative reward defined by negative entropy. However, in
the short term, SDCB and greedy algorithm can outperform
ME-UCB, but with relatively low difference.

VI. CONCLUSION

In this paper, we study the worker selection problem in
a crowdsourcing system for minimizing cumulative empirical
entropy. We formulate the problem as an EM-MAB problem

and provide a general greedy algorithm. Then we develop an
ME-UCB algorithm for worker selection, and prove that the
regret is upper bounded by |W|N

[
1
2ε + 2

√
2 · ε−∆max

i,k

σN

]
for

any 0 < ε < 1 except for the theoretical lower bound of 1/e
reward loss. Finally, we conduct experiments on randomly-
generated datasets and real-life RTE dataset to validate the
performance of our algorithm compared to several baseline
algorithms. Both theoretical analysis and experiments show
the advantage of our algorithm than other state-of-the-art
algorithms focusing on submodular MABs.
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APPENDIX A
PROOF OF LEMMA 1

Proof. As Aj = {x1,j , x2,j , · · · , xN,j} is the set of work-
ers selected sequentially at round j, we can use Ai,j =
{x1,j , · · · , xi,j} to denote the first i workers that are selected
at round j. Moreover, let A∗ denote the set of optimal workers
such that for any A ⊆ W, |A| = N ,

Ḡ(A∗) ≥ Ḡ(A).

Therefore, according to submodularity of entropy, we have

Ḡ(A∗) ≤ Ḡ(A∗ ∪ Ai,j) ≤ Ḡ(Ai,j) +
∑
a∈A∗

∆(a|Ai,j)

≤ Ḡ(Ai,j) +N sup
a
{∆(a|Ai,j)}

= Ḡ(Ai,j) +N [ri+1,j + ∆(xi+1,j |A+ i, j)],

where

ri+1,j = sup
a

∆(a|Ai,j)−∆(xi+1,j |Ai,j)

=Ḡ(Ai,j) +N
[
Ri+1,j −Ri,j + Ḡ(Ai+1,j)− Ḡ(Ai,j)

]
.

Here Ri,j is the cumulative for ri,j at the jth round, defined
as follows:

Ri,j =

i∑
α=1

rα,j .

Therefore, we can put ri+1,j into the expression for Ḡ(A∗)
and get that
Ḡ(A∗)− Ḡ(Ai,j) ≤ N [Ri+1,j − Ri,j + Ḡ(Ai+1,j)− Ḡ(Ai,j)]
≤ N{Ri+1,j − Ri,j − [Ḡ(A∗)− Ḡ(Ai+1,j)] + [Ḡ(A∗)− Ḡ(Ai,j)]}.

Let δi,j = Ḡ(A∗) − Ḡ(Ai,j) to simplify expression, and
therefore

δi,j ≤ N [Ri+1,j −Ri,j − δi+1,j + δi,j ],

and thus,

δi,j ≤ Ri,j −Ri−1,j +

(
1− 1

N

)
δi−1,j .



As Ḡ(∅) = 0, we know that δ0,j = Ḡ(A∗) for any j. Write
the expression for δi,j iteratively, and we can get

δi,j ≤ Ri,j − Ri−1,j +

(
1−

1

N

)
δi−1,j

≤Ri,j − Ri−1,j +

(
1−

1

N

)[
Ri−1,j − Ri−2,j +

(
1−

1

N

)
δi−2,j

]

≤
i−1∑
α=0

(
1−

1

N

)α
(Ri−k,j − Ri−k−1,j) +

(
1−

1

N

)i
δ0,j

=Ri,j −
1

N

i−1∑
α=0

(
1−

1

N

)α
Ri−1−k,j +

(
1−

1

N

)i
δ0,j

≤Ri,j + e
− i
N Ḡ(A∗).

Let i = N , then Ai,j = AN,j = Aj and

Ḡ(A∗)− Ḡ(Aj) ≤ RN,j + e−1Ḡ(A∗),

which indicates that(
1− 1

e

)
Ḡ(A∗)− Ḡ(Aj) ≤ RN,j =

N∑
i=1

ri,j .

Therefore, we come to the conclusion that

R(T ) ≤
T∑
j=1

RN,j =

T∑
j=1

N∑
i=1

ri,j .

And we complete the proof.

APPENDIX B
PROOF OF THEOREM 2

Proof. As ri,j = ∆(ai,j |Ai,j)−∆(xi+1,j |Ai,j) = Ḡ({ai,j}∪
Ai,j)− Ḡ({xi+1,j} ∪ Ai,j), we have

R(T ) =

T∑
j=1

N∑
i=1

ri,j

=

Nw∑
k=1

T∑
j=1

N∑
i=1

P(xi+1,j = k)[Ḡ({ai,j} ∪ Ai,j)− Ḡ({k} ∪ Ai,j)]

=

Nw∑
k=1

T∑
j=1

N∑
i=1

E {I[xi+1,j = k]}∆i,j,k,

where we use ∆i,j,k to denote Ḡ({ai,j}∪Ai,j)−Ḡ({k}∪Ai,j)
for convenience. Then we have

R(T )

≤
Nw∑
k=1

N∑
i=1

T∑
j=1

∆i,j,kE{I[µ̄ai,j (j) +
βj
σ2
N s
≤ µai,j − ε]

+ I[µ̄xi+1,j
+

βj
σ2
N s
≥ µai,j − ε, xi+1,j = k]}

≤
Nw∑
k=1

N∑
i=1

∆max
i,k

T∑
j=1

E{I[µ̄ai,j (j) +
βj
σ2
N s
≤ µai,j − ε]

+ I[µ̄xi+1,j
+

βj
σ2
N s
≥ µai,j − ε, xi+1,j = k]}

where we use ∆max
i,k to denote maxj ∆i,j,k. Then we

analyze two parts E
{
I[µ̄ai,j (j) +

βj
σ2
N s
≤ µai,j − ε]

}
and

E
{
I[µ̄xi+1,j

+
βj
σ2
N s
≥ µai,j − ε, xi+1,j = k]

}
separately,

where ε is any real number ranging from 0 to 1. Firstly we
bound E

{
I[µ̄ai,j (j) +

βj
σ2
N s
≤ µai,j − ε]

}
as follows.

T∑
j=1

E
{
I[µ̄ai,j (j) +

βj
σ2
N s
≤ µai,j − ε]

}

=

T∑
j=1

P
{
µ̄ai,j (j) +

βj
σ2
N s
≤ µai,j − ε

}

≤
T∑
j=1

j∑
s=1

P
{
µ̄ai,j ,s +

βj
σ2
N s
≤ µai,j − ε

}

≤
T∑
j=1

j∑
s=1

exp

{
− [µN + εσ2

N s+ βj ]
2

2σ2
N

}

=

T∑
j=1

exp

{
− (µN + βj)

2

2σ2
N

} j∑
s=1

exp

{
−ε

2σ4
N s

2 + 2εσ2
N s

2σ2
N

}

≤
T∑
j=1

exp

{
− (µN + βj)

2

2σ2
N

}∫ ∞
0

exp

{
−ε

2σ2
N s

2

2

}
ds

≤
T∑
j=1

exp

{
− (µN + βj)

2

2σ2
N

}
· 1√

2εσN

≤ 1√
2εσN

∫ ∞
0

exp

{
−

β2
j

2σ2
N

}
dj ≤ 1

2ε
.

And then we bound the right part as follows.

T∑
j=1

E
{
I[µ̄xi+1,j

+
βj
σ2
N s
≥ µai,j − ε, xi+1,j = k]

}

≤
T∑
s=1

E
{
I[µ̄xi+1,s

+
βT
σ2
N s
≥ µai,s − ε]

}

≤
T∑
s=1

E
{
I[µ̄xi+1,s

− µxi+1,s
+

βT
σ2
N s
≥ ∆i,s − ε]

}

≤
T∑
s=1

P
{
|µxi+1,s − µ̄xi+1,s | ≥ |ε+

βT
σ2
N s
−∆max

i,k |
}

≤
T∑
s=1

2 exp

{
−

[µN + |εσ2
N s+ βT −∆max

i,k σ2
N s|]2

2σ2
N

}

≤2

T∑
s=1

exp

{
−

[εσ2
N s+ βT −∆max

i,k σ2
N s]

2

2σ2
N

}

=2

T∑
s=1

exp

− [s+ βT
(ε−∆max

i,k )σ2
N

]2

2
(ε−∆max

i,k )2

σ2
N


≤2

∫ ∞
−∞

exp

− [s+ βT
(ε−∆max

i,k )σ2
N

]2

2
(ε−∆max

i,k )2

σ2
N

ds

=2
√

2 ·
ε−∆max

i,k

σN
,

which leads to the conclusion.
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