
1

Optimizing Cross-Line Dispatching for Minimum
Electric Bus Fleet

Chonghuan Wang, Yiwen Song, Guiyun Fan, Haiming Jin Member, IEEE,
Lu Su, Member, IEEE, Fan Zhang, Member, IEEE, Xinbing Wang, Senior Member, IEEE

Abstract—Recent years have witnessed the increasing popularity of electric buses (e-buses) around the globe due to their environment
friendly nature. However, various factors, such as the prohibitive purchasing costs and the scarcity of large-scale charging facilities,
hinder the wider adoption of e-buses. Thus, to effectively cut the cost of building and maintaining urban e-bus systems, we optimize
the dispatching strategy for urban e-bus systems to satisfy public transportation demands with the minimum e-bus fleet. Specifically, we
propose to systematically exploit at city-scale cross-line dispatching, a smart dispatching strategy allowing one bus to serve multiple bus
lines when necessary. Technically, we construct a novel and generalizable graph-theoretic model for urban e-bus systems integrating
e-buses non-negligible charging time, the spatio-temporal constraints of bus trips, and various other real-world factors. We prove that
it is NP-hard, and has no (2 − ε)-approximation algorithm. Next, we propose a polynomial-time algorithm solving the problem with a
guaranteed approximation ratio. Furthermore, we conduct extensive experiments on a large-scale real-world bus dataset from Shenzhen,
China, which validate the effectiveness of our algorithms. As shown by our experimental results, to serve 300 bus lines, our dispatching
strategy needs 38.2% less e-buses than the one currently used in practice.

Index Terms—Cross-line dispatching, electric bus, minimum fleet, combinatorial optimization.

F

1 INTRODUCTION

Our society is witnessing a rapid vehicle electrification
process due to the environment-friendly nature of electric
vehicles (EVs). Apart from electric taxis and private EVs,
several countries such as the United States and China have
increasingly adopted electric buses (e-buses) into their pub-
lic transportation systems to advocate green commuting.
In various cities around the globe (e.g., Shenzhen, Los
Angeles), e-buses have started to serve urban residents’
massive needs for public transportation with zero exhaust
gas emission.

However, nowadays, e-buses are still far from funda-
mentally replacing traditional diesel buses, because of the
prohibitive costs of building and maintaining an urban e-

• Chonghuan Wang is with Center for Computational Science and Engi-
neering, Massachusetts Institute of Technology, Cambridge, MA 02139,
US. He was with the Department of Electronic Engineering, Shanghai
Jiao Tong University, Shanghai 200240, China. The work was done in
Shanghai Jiao Tong Universtiy. E-mail: wangchonghuan@sjtu.edu.cn.

• Yiwen Song is with the Department of Electronic Engineering, Shang-
hai Jiao Tong University, Shanghai 200240, China. E-mail: gavin-
syw@sjtu.edu.cn.

• Guiyun Fan is with the Department of Computer Science and Engineer-
ing, Shanghai Jiao Tong University, Shanghai 200240, China. E-mail:
fgy726@sjtu.edu.cn.

• Haiming Jin is with the John Hopcroft Center for Computer Science and
the Department of Electronic Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China. E-mail: jinhaiming@sjtu.edu.cn.

• Lu Su is with School of Electrical and Computer Engineering, Purdue
University, West Lafayette, Indiana 47907, US. Email: lusu@purdue.edu.

• Fan Zhang is with the Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, China. E-mail: zhang-
fan@siat.ac.cn.

• Xinbing Wang is with the Department of Electronic Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China. E-mail:
xwang8@sjtu.edu.cn.

(Corresponding authors: Guiyun Fan and Haiming Jin.)

bus system. On one hand, an e-bus is usually several times
more expensive than a traditional diesel bus. For example,
the price of a BYD e-bus is around $263, 000 [1], which
is approximately 2.5 times that of a diesel bus. On the
other hand, a city-scale e-bus fleet usually requires a large
number of charging facilities to support its daily operation,
which will incur high construction and maintenance costs.
Therefore, to promote the adoption of e-buses in a wider
scope of cities, it is essential to reduce the above costs to
a moderately affordable level. In practice, cost reduction
could naturally be achieved, if the public transportation
demands in a city could be served with as few number of
e-buses as possible, i.e., with the minimum e-bus fleet.

A naive solution to shrink the size of a bus fleet serving
a city is to adopt a less frequent dispatching schedule
and even remove some existing bus lines. However, such
method is rather undesirable, as the bus lines and schedules
of a modern city are oftentimes well-developed, and thus
any drastic change to them could inevitably cause severe
inconvenience to the passengers. Therefore, in this paper, we
propose to exploit cross-line dispatching, a smart dispatching
strategy that allows one bus to serve multiple lines, to
achieve minimum fleet without altering existing lines and
schedules. The philosophy behind cross-line dispatching is
to reuse idle buses of one line to serve other busy lines. For
example, the lines that travel within central business dis-
tricts of a city may have relatively busy schedules, whereas
the ones that commute between urban and suburban areas
may oftentimes schedule fewer daily trips. Clearly, a bus
of the latter could be dispatched to serve the former given
that it is idle. Thus, by sharing buses among different
lines when necessary, cross-line dispatching is apparently
a promising approach to significantly reduce the number of
buses needed. Nowadays, although cross-line dispatching

has already been adopted by some cities, it is usually of
very limited scale. For example, based on our extensive
analysis of the bus trajectory dataset from Shenzhen1, the
4th largest city in China, the percentage of the buses that
serve multiple lines is less than 1%. Therefore, in this paper,
we aim to systematically optimize cross-line dispatching at city-
scale to minimize the overall number of e-buses needed in a
urban bus system. However, such task is rather challenging
in the following aspects.

The first challenge comes from the non-negligible recharg-
ing time of e-buses compared with the refueling time of
traditional diesel buses which is usually short enough to be
omitted. The omitted refueling time naturally brings negli-
gible endurance limits for diesel buses, while the covering
range limits can not be ignored in e-bus systems. Such differ-
ence requires a much more meticulous design of dispatching
strategies that take into account e-buses recharging time and
status. Also, such difference can not be seen as a mild one,
because it makes the minimum e-bus fleet problem becomes
NP-hard and in contrast, the same problem for diesel bus
systems can be solved in polynomial time, as shown in
Section 3. Next, it is highly non-trivial to construct a realistic
model of an urban e-bus system with the other myriad of
practical factors that have to be taken into consideration,
including heterogeneous electricity consumption of differ-
ent bus lines, unevenly distributed charging facilities across
the city, the plethora of choices of when and where to charge
the e-buses, and many others. Furthermore, optimizing city-
wide e-bus dispatching is usually a large-scale problem due to
the large numbers of lines and buses a modern city may
have, which inevitably calls for dispatching algorithms with
low computational complexity.

To address these challenges, we develop a novel graph-
theoretic model of urban e-bus systems that captures col-
lectively the spatio-temporal relationships among bus trips,
e-buses’ recharging actions, as well as various other afore-
mentioned real-world factors. Such model has a strong
generalization ability, and could be flexibly adapted accord-
ing to the conditions of different real-world e-bus systems.
Theoretically, we formulate the cross-line dispatching opti-
mization problem as a combinatorial optimization over the
constructed graph, which is similar to the traditional path
cover problem [2], but fundamentally different from it and
other existing problems. Based on our hardness analysis
of the formulated problem, we show that it is not only
NP-hard, but also has no (2 − ε)-approximation algorithm.
Furthermore, we propose a polynomial-time approximation
algorithm that approximately minimizes the number of
required e-buses with a guaranteed approximation ratio.

The contributions of this paper are summarized as fol-
lows.
• To the best of our knowledge, this paper is the first work

that systematically optimizes cross-line dispatching at city-
scale to minimize the number of e-buses needed in urban e-
bus systems.

• We propose a novel and practical graph-theoretic model
for urban e-bus systems, which integrate a wide scope of
real-world factors, and could be easily generalized accord-
ing to the conditions of different e-bus systems.

1. Please refer to Section 5.1 for the detailed data analysis results.

• Theoretically, we prove that the cross-line dispatching
optimization problem is NP-hard, and has no (2 −
ε)-approximation algorithm. Furthermore, we propose a
polynomial-time algorithm to solve the problem with a
γ+1
2

(
1 + ln 2γ

γ+1

)
approximation ratio, where γ is the length

of the longest path in the constructed graph.
• We analyze a large-scale e-bus trajectory dataset contain-

ing the trajectories of 16,359 buses within the time span
from June 1st to June 30th, 2017, from Shenzhen, the 4th
largest city in China, and provide a series of meaningful
insights. Furthermore, we validate the performance of our
algorithms based on extensive experiments over the real-
world dataset.

The rest of this paper is organized as follows. Section 2
introduces some basic concepts we use throughout this pa-
per. The formal mathematical problem formulation and the
hardness analysis of the formulated problem are provided
in Section 3. Then, in Section 4, we present the proposed
algorithms, as well as the corresponding analysis. Section
5 shows results of our extensive experiments on a large-
scale real-world dataset. Section 6 surveys the past literature
related to this paper, and finally Section 7 concludes this
paper.

2 PRELIMINARIES

We define several critical concepts that will be used in this
paper to describe the e-bus systems in Section 2.1. Then,
we construct graph-theoretical models to describe e-bus
systems. In Section 2.2, we state our goal to minimize the
e-bus fleet and formulate our problem onto the constructed
graphs.

2.1 E-Bus System Model
For urban bus systems, frequent modifications of the timeta-
bles are inappropriate and may cause troubles to the public.
Thus, in this paper, we consider bus systems operating
under fixed timetables. The timetable of a bus line is a
sequence of time instances within a specific period of time
(e.g., one day), where each time instance represents one of
the moments when a bus line dispatches a bus from its
origin station. Next, we define a dispatching task formally
in Definition 1.

Definition 1 (Dispatching Task). A dispatching task τi, rep-
resented by a 4-tuple (oi, di, toi , tdi), requires the bus system to
dispatch a bus from the origin station oi to the terminal station
di at the departure time toi , and the bus is expected to reach
di at the arrival time tdi . All dispatching tasks in a bus system
constitute the set D = {τi|i ∈ {1, 2, · · · , N}}, where N is the
total number of tasks.

With the advancement of machine learning techniques,
the time when one bus reaches its destination in a specific
day can usually be well predicted through various methods,
such as, spatio-temporal attentive neural network [3], graph
multi-attention network [4], and many others [5, 6]. Thus,
given oi, di, and toi , we could usually predict tdi with
high accuracy. As mentioned in Section 1, we consider bus
systems that use the cross-line dispatching strategy defined in
Definition 2.

2

Line 𝑙ଶ

Line 𝑙ଵ

Station 𝑠ଷ

Station 𝑠ଶ
Station 𝑠ଵ

(a) Two round-trip lines l1 and l2 from Shenzhen’s bus
system.

𝑙ଶ

𝑙ଵ

𝑠ଷ

𝑠ଶ
𝑠ଵ

Line Direction Timetable Trip Time𝑙ଵ 𝑠ଵ to 𝑠ଶ 7:00 7:10 7:20 30 min𝑙ଵ 𝑠ଶ to 𝑠ଵ 7:25 7:35 7:45 30 min𝑙ଶ 𝑠ଵ to 𝑠ଷ 7:45 8:00 8:10 20 min𝑠ଷ to 𝑠ଵ 7:45 8:00 8:10 20 min

Dispatching Tasks𝜏ଵ=ሺ𝑠ଵ, 𝑠ଶ, 7:00, 7:30ሻ 𝜏଻=ሺ𝑠ଵ, 𝑠ଷ, 7:45, 8:05ሻ𝜏ଶ=ሺ𝑠ଵ, 𝑠ଶ, 7:10, 7:40ሻ 𝜏଼=ሺ𝑠ଵ, 𝑠ଷ, 8:00, 8:20ሻ𝜏ଷ=ሺ𝑠ଵ, 𝑠ଶ, 7:20, 7:50ሻ 𝜏ଽ=ሺ𝑠ଵ, 𝑠ଷ, 8:10, 8:30ሻ𝜏ସ=ሺ𝑠ଶ, 𝑠ଵ, 7:25, 7:55ሻ 𝜏ଵ଴=ሺ𝑠ଷ, 𝑠ଵ, 7:45, 8:05ሻ𝜏ହ=ሺ𝑠ଶ, 𝑠ଵ, 7:35, 8:05ሻ 𝜏ଵଵ=ሺ𝑠ଷ, 𝑠ଵ, 8:00, 8:20ሻ𝜏଺=ሺ𝑠ଶ, 𝑠ଵ, 7:45, 8:15ሻ 𝜏ଵଶ=ሺ𝑠ଷ, 𝑠ଵ, 8:10, 8:30ሻ

𝜏ଵ

𝑙ଶ

𝜏ଶ 𝜏ଷ
𝜏ସ 𝜏ହ 𝜏଺
𝜏଻ 𝜏଼ 𝜏ଽ
𝜏ଵ଴ 𝜏ଵଵ 𝜏ଵଶ

(b) Timetables and dispatching tasks of the
two lines.

𝜏ଵ 𝜏ଶ 𝜏ଷ
𝜏ସ 𝜏ହ 𝜏଺
𝜏଻ 𝜏଼ 𝜏ଽ
𝜏ଵ଴ 𝜏ଵଵ 𝜏ଵଶ

𝜏ଵ 𝜏ଶ 𝜏ଷ
𝜏ସ 𝜏ହ 𝜏଺
𝜏଻ 𝜏଼ 𝜏ଽ
𝜏ଵ଴ 𝜏ଵଵ 𝜏ଵଶ

(c) The spatio-temporal task
graph.

Figure 1: An illustration of the construction of the spatio-temporal task graph.

Definition 2 (Cross-Line Dispatching). Cross-line dispatching
is a kind of dispatching strategy that allows one bus to serve
multiple bus lines.

Under such cross-line dispatching strategies, we are
interested in whether different dispatching tasks could be
served by one bus. Note that, if two tasks τi and τj can be
served by one bus, they must satisfy the following spatio-
temporal constraints. On one hand, task τi’s terminal station
di has to be the same with task τj ’s origin station oj , i.e.,
di = oj . On the other hand, the departure time of τj must
be after the arrival time of task τi, i.e., tdi < toj . In order to
represent the tasks and their spatio-temporal relationships
more clearly, we introduce the concept of spatio-temporal task
graph as defined in Definition 3.

Definition 3 (Spatio-Temporal Task Graph). We define a
spatio-temporal task graph as a directed graph G = (V, E), where
V represents all the dispatching tasks, and there is a directed edge
from τi to τj , if τi and τj satisfy the spatio-temporal constraints
di = oj and tdi < toj .

From Definition 3, we need the timetables and locations
of the origin and terminal stations as inputs to construct
the graph. The edges in the graph captures all the spatio-
temporal relationships among dispatching tasks we need.
In real life, the timetable usually takes one minute as the
smallest time unit. Hence, in this paper, the time resolution
is one minute. We provide a toy example in Figure 1 to
give a more clear clarification. We choose two round-trip
lines from Shenzhen’s bus system and assume that they
follow the timetables shown in the Figure 1(b). Then, we
have all the corresponding dispatching tasks given in Figure
1(b), each of which is represented by a vertex in the spatio-
temporal task graph shown in Figure 1(c). For example,
tasks τ1 = (s1, s2, 7:00, 7:30), τ5 = (s2, s1, 7:35, 8:05), and
τ9 = (s1, s3, 8:10, 8:30) are connected, as they satisfy the
spatio-temporal constraints. In this work, we only use the
terminal stations and destinations of each lines. Although
some lines may share intermediate stops, one e-bus serving
for two lines at the same time during one journey is rare in
real life, and otherwise, some passengers will be dropped

off halfway, which greatly degrades the quality of services.
A naive upper bound of the complexity of constructing

the spatio-temporal graph is O(N2), where N is the total
number of the dispatching tasks. However, in e-bus systems
setting, at least there are no edges between the dispatching
tasks from the same non-loop line and non-loop lines take
up the majority of whole e-bus systems. Also, the complex-
ity of constructing the graph heavily relies on the topologies
and timetables of lines. For example, the bus lines which
only travel in the suburban areas may be hard to share one
e-bus with the ones commuting in busy central business
districts. Therefore, our complexity is upper bounded by
an acceptable polynomial complexity and can be greatly
reduced given topologies and timetables of all lines.

However, the fact that two tasks are connected in the
spatio-temporal task graph does not necessarily mean that
they can be served by one e-bus, because the spatio-
temporal task graph cannot capture e-buses’ remaining elec-
tricity statuses. For example, we consider again tasks τ1, τ5,
and τ9 in Figure 1(c), and assume that each of these three
tasks requires 20% of an e-bus’s battery capacity to finish2.
Clearly, although the three tasks are connected in the spatio-
temporal task graph given in Figure 1(c), an e-bus with
less than 60% remaining electricity cannot carry out them
in a row without recharging. By the above observation, we
define a virtual task in the following Definition 4.

Definition 4 (Virtual Task). A virtual task τi,k of dispatching
task τi is defined as a 6-tuple (oi, di, toi , tdi , ei, ei,k), where ei
is the electricity consumption for task τi, and ei,k represents the
remaining electricity level of a bus that is ready to execute task
τi. Furthermore, the virtual task set of task τi is defined as Si =
{τi,k|ei,k ≥ ei}, which is the set of τi’s virtual tasks with ei,k ≥
ei.

Here, we discretize the electricity level (e.g., 1% of a

2. As one city usually uses e-buses of the same type, we assume
without loss of generality that e-buses in our model have the same
battery capacity, and we use percentages to represent the amount of
electricity consumption in the rest of this paper. Note that the methods
proposed in this paper can be easily extended to the scenario where
e-buses have different battery capacity.

3

full-charges battery). First, it is not practical to see the
electricity level as a continuous variable in real life. The
remaining electricity people can observe on e-buses or any
other electric facilities is discrete. Also, it is unnecessary to
be so precise since there will surely be some variance on
how much electricity one trip will consume due to different
weathers, dynamic road conditions and various passengers
load. Discretization can provide enough tolerance for such
variance. Besides, although charging time is a continuous
variable, considering the relatively slow charging speed, it
will not much difference if we see one hour and five seconds
as one hour. Based on such definition of virtual task, we
formally define the bus shareability graph in Definition 5.

Definition 5 (Bus Shareability Graph). A bus-shareability
graph is a directed graph Ge = (Ve, Ee), where Ve represents
the virtual tasks in all dispatching tasks’ virtual task sets. There
is a directed edge from virtual task τi,k to τj,m, if an edge from
τi to τj exists in the spatio-temporal task graph, and either of the
following Conditions 1 and 2 on electricity levels ei, ei,k, and
ej,m is satisfied.
• Condition 1: If no charging facility exists at station di, ej,m =
ei,k − ei should hold.

• Condition 2: If charging facilities exist at station di, ej,m
should fall into the range [ei,k − ei,min{ei,k − ei + η(tdi −
toi), 100%}], where η denotes the charging rate.

By such definition, an edge between two virtual tasks
τi,k and τj,m exists only when task τi and τj satisfy the
spatio-temporal constraints specified by the spatio-temporal
task graph, and either of the conditions given in Definition
5 depending on whether charging facilities exist at station
di.

𝜏1,1 𝜏1,2 𝜏1,3 𝜏1,4 𝜏1,5 𝜏2,1 𝜏2,2 𝜏2,3 𝜏2,4 𝜏2,5

𝜏6,1 𝜏6,2 𝜏6,3 𝜏6,4 𝜏6,5

𝜏11,5

𝜏12,1 𝜏12,2 𝜏12,3 𝜏12,4 𝜏12,5

𝜏7,1 𝜏7,2 𝜏7,3 𝜏7,4 𝜏7,5

Figure 2: The bus shareability graph for tasks τ1, τ2, τ6, τ7, and τ12 in
spatio-temporal task graph in Figure 1(c).

Figure 2 gives an example of the bus shareability graph
for tasks τ1, τ2, τ6, τ7, and τ12 in the spatio-temporal
task graph in Figure 1(c). Without loss of generality, we
take 20% as the step to quantify the ei,k for every virtual
task τi,k, and thus each virtual task set Si consists of 5
elements as shown in Figure 2. We assume that only station
s3 is equipped with charging facilities. For virtual task
τ1,1 = (s1, s2, 7:00, 7:30, 20%, 100%), according to Condition
2 in Definition 5, the remaining electricity of task τ6’s virtual
tasks connected with τ1,1 should fall into the the range
[80%, 100%]. Therefore, there is an edge from τ1,1 to τ6,2.
There are two directed edges from τ7,1 corresponding to

charging and no charging. The directed edge from τ7,1 to
τ12,1 means the time between these two dispatching tasks is
enough to fully charge one e-bus after serving τ7.

In fact, the bus shareability graph could be easily gen-
eralized to different scenarios by considering additional
sets of rules. For example, if the bus system forbids e-
buses to charge during hours when the electricity prices are
excessively high, edges that involve charging during those
hours could be deleted. As another example, if tm time
is required for maintenance after every task, the temporal
constraint for a directed edge from task τi to τj to exist in
the spatio-temporal task graph will naturally change from
tdi < toj to tdi + tm < toj . Some e-bus systems allow the
empty e-bus routing, which means that one bus can travel
without undertaking any dispatching task just to reposition
itself. In this case, we can relax the constraint di = oj to that
one bus can travel from di to oj before toj . The specific rules
could be set accordingly in different scenarios, which shows
a strong generalization ability of the bus-shareability graph
defined in this paper.

2.2 Problem Description

In this paper, we aim to address the problem of finding
the cross-line dispatching strategy that minimizes the number
of buses in an e-bus system under given timetables. Next, we
formally describe such problem as an optimization over the
bus shareability graph. First, we define the concept of a path
of the bus shareability graph in the following Definition 6.

Definition 6 (Path). In a bus shareability graph Ge = (Ve, Ee),
a path is a sequence of vertices, where each two adjacent vertices
are connected by an edge in Ee. Note that a single vertex is
regarded as a path, as well. Furthermore, all the paths of the graph
Ge constitute the path set P .

By our definition of the bus shareability graph, all tasks
along a path can be executed by one e-bus, and thus one
path in fact corresponds to one e-bus. A path traversing a
virtual task τi,k indicates that the bus represented by it can
carry out the dispatching task τi, and a dispatching task τi is
executed, if and only if one virtual task τi,k in its virtual task
set is traversed by a selected path. Clearly, so as to satisfy
the timetable, each virtual task set should be traversed by
one and only one chosen path. Thus, the minimum e-bus
fleet problem is equivalent to finding a series of paths with
the smallest cardinality covering each virtual task set once
and only once. The above problem can be described as a
virtual task set path cover (VTSPC) problem in Definition 7.

Definition 7 (VTSPC Problem). Given a bus shareability graph
Ge, the virtual task set path cover (VTSPC) problem finds the
path set P∗ ⊆ P with the minimum cardinality, referred to as
the minimum VTS path cover, such that each virtual task set is
traversed by one and only one path in P∗.

By the above definition, the VTSPC problem is different
from the traditional minimum path cover problem [2] which
requires each vertex of the graph to be traversed by one
path. Vertex-disjoint path covering problem was studied in
[7] with the objective of maximizing the total weights, which
is totally different with our minimizing the number of paths.
Besides, VTSPC problem is not covering the whole graph,

4

𝜏1,1 𝜏1,2 𝜏1,3 𝜏1,4 𝜏1,5 𝜏2,1 𝜏2,2 𝜏2,3 𝜏2,4 𝜏2,5

𝜏6,1 𝜏6,2 𝜏6,3 𝜏6,4 𝜏6,5

𝜏11,5

𝜏12,1 𝜏12,2 𝜏12,3 𝜏12,4 𝜏12,5

𝜏7,1 𝜏7,2 𝜏7,3 𝜏7,4 𝜏7,5

Path 𝒑𝟏

Path 𝒑𝟐

Path 𝒑𝟑

Figure 3: An illustration of the minimum VTS path cover of the bus
shareability graph in Figure 2.

but exactly one virtual task in each virtual task set, which
further makes our problem different from the current ones
in literatures. In Figure 3, we demonstrate the minimum
VTS path cover P∗ =

{
{τ1,1}, {τ2,1, τ6,2, {τ7,5, τ12,5}

}
of the

bus shareability graph in Figure 2.

3 MATHEMATICAL FORMULATION

In this section, we formulate the VTSPC problem given
in Definition 7. We start with formulating in Section 3.1 a
special yet meaningful case of VTSPC, where the size of each
virtual task set is one. Note that such special case serves as
preliminary for, and sheds lights upon the formulation of
the general VTSPC problem formulated in Section 3.2.

3.1 VTSPC Problem with Single Element Virtual Task
Set
In this section, we formulate the VTSPC problem with
single element virtual task set (se-VTSPC problem), which
is equivalent to finding the minimum path cover over the spatio-
temporal task graph. Note that, once fueled, the distance that
a diesel bus could cover is orders of magnitude greater than
the route length3, and the refueling time of a diesel bus is
usually short enough to be omitted. Thus, a path in the
spatio-temporal task graph could be regarded as a diesel
bus, and the vertices traversed by the path correspond to
the tasks carried out by it. Therefore, similar to the VTSPC
problem, the se-VTSPC problem can be regarded as finding
the cross-line dispatching strategy that minimizes the number of
buses with timetable constraints in traditional diesel bus systems.

The mathematical formulation of the se-VTSPC problem
is given in the following integer-linear optimization pro-
gram.

se-VTSPC : min
∑
i:pi∈P

xi (1)

s.t.
∑

i:τj∈pi,pi∈P
xi = 1, ∀τj ∈ V, (1a)

xi ∈ {0, 1}, ∀pi ∈ P. (1b)

3. For example, the fuel consumption of a HIGER KLQ6129GAE52
diesel bus is 29L every 100 kilometers [8], and the capacity of its fuel
tank is 270L.

The se-VTSPC problem takes the spatio-temporal task
graph G and the path set P as inputs. Each path pi ∈ P
corresponds to a boolean variable xi. xi = 1 indicates that
path pi is chosen to be in the selected path set P∗, and
otherwise pi 6∈ P∗. The objective function

∑
i:pi∈P xi given

by Equation (1) is exactly the total number of chosen paths.
Constraint (1a) means for each task τj , only one chosen path
can traverse τj . Constraint (1b) guarantees that each xi is a
boolean variable.

Finding the minimum path cover of an arbitrary directed
graph is NP-hard [9], and hence computationally infeasible
for large graphs. However, the minimum path cover can be
found in polynomial time if the graph is acyclic [9]. In the
following Theorem 1, we prove that the spatio-temporal task
graph is acyclic, which indicates that the se-VTSPC problem
can be solved optimally in polynomial time.

Theorem 1. Any spatio-temporal task graph G = (V, E) as
defined in Definition 3 is acyclic.

Proof. We carry out the proof of this theorem by con-
tradiction. Assume a cyclic path exists in some spatio-
temporal task graph G. Without loss of generality, let P =
{(v1, v2), (v2, v1)} be a cyclic path. v1 and v2 are two ver-
tices representing two dispatching tasks (s1, s2, to1 , td1) and
(s2, s1, to2 , td2). to1 , td1 , to2 and td2 are the time of departure
and arrival of the two dispatching tasks, respectively. If
there are two edges between v1 and v2, the two tasks have
to satisfy the temporal constraints td1 < to2 , td2 < to1 . With
the to2 < td2 , we have td1 < to2 < td2 < to1 which implies
that td1 < to1 , i.e., the bus finishes the trip before it starts.
Thus, we have a contradiction, and arrive at the conclusion
that any spatio-temporal task graph defined in Definition 3
is acyclic.

More specifically, the problem of finding the minimum
path cover in a directed acyclic graph is equivalent to the
well known maximum bipartite matching problem [10],
which can be solved by the Hungarian algorithm [11] or
using the Hopcroft-Karp algorithm [12] in timeO(|E|

√
|V|).

Different from se-VTSPC problem we discussed in this
section, the general VTSPC problem is NP-hard. Although
the difference of sizes of each virtual task set seems mild,
such difference significantly impacts the difficulty of our
problem. Moreover, as se-VTSPC problem can be seen as
the dispatching of traditional diesel buses, optimizing on
e-bus systems is much more difficult and worths studying.

3.2 General VTSPC Problem

As defined in Section 2.2, the VTSPC problem aims to
find the minimum VTS path cover P∗, which traverses
each virtual task set exactly once. The formal mathematical
formulation of the VTSPC problem is given in the following
integer-linear optimization program.

VTSPC : min
∑
i:pi∈P

xi (2)

s.t.
∑

i:vj,k∈Vj
⋂
pi

xi = 1, ∀τj ∈ D, (2a)

xi ∈ {0, 1}, ∀pi ∈ P. (2b)

5

The general VTSPC problem takes the bus shareability
graph Ge, the task set D, and the path set P as inputs.
Each path pi ∈ P corresponds to a boolean variable xi.
xi = 1 indicates that path pi is chosen in the minimum VTS
path cover P∗, otherwise pi 6∈ P∗. The objective function∑
i:pi∈P xi given by Equation (2) is the total number of paths

chosen in P∗. Constraint (2a) is to ensure that exactly one
chosen path in P∗ traverses each virtual task set Vj , and
Constraint (2b) restricts xi to be a boolean variable.

The major difference between the se-VTSPC and VTSPC
problems lies in Equation (1a) and (2a). Instead of enforcing
each vertex to be traversed by one path, Equation (2a)
requires that exactly one vertex τi,k in each Si lies in
one chosen path. Note that such difference fundamentally
changes the hardness of the problem, as will be shown
in the rest of this section. Intuitively, such difference is
just incurred by whether we should consider the charging
and energy constratins, which differs our problem from the
tradition diesel bus optimization and highlights our novelty
and contributions.

Although the se-VTSPC problem has been shown solv-
able in polynomial time in Section 3.1, the decision version
of VTSPC is in fact NP-complete. Next, we state the decision
version of the VTSPC problem as follows.
• INSTANCE: Bus shareablility graph Ge and positive inte-

ger K .
• QUESTION: Does Ge has a path set of size at most K

which traverses each virtual task set exactly once?
Next, in Theorem 2, we prove the NP-completeness of

VTSPC’s decision version.

Theorem 2. The decision version of the VTSPC problem is NP-
complete.

Proof. We construct a reduction from the Bin Packing prob-
lem to the VTSPC problem.

Let U be the finite set of items, with a size s(ui) ∈ Z+

for each ui ∈ U , and every bin has a fixed integer capacity
B. The bin packing problem asks whether there is a partition
of U into disjoint sets U1, U2, . . . , UK such that the sum of
the sizes of the items in each Ui is B or less, given any
positive integer K [13]. Note that if the capacity B goes
to infinity, the bin packing problem can be directly solved.
Therefore, we assume B ≤ C with C being a sufficiently
large constant, which does not affect the hardness of the bin
packing problem.

Next, we describe our way of constructing a shareability
graph. First, we treat each item ui as a task, and define the
virtual task and virtual task set of it as follows. A virtual
task of ui is defined as a two-tuple ui,k = (s(ui), ci,k),
where ci,k is the remaining space of one bin when ui is
decided to be packed into it. Then, the virtual task set of
ui is defined as Ui = {(s(ui), ci,k)|s(ui) ≤ ci,k}. Thus, the
shareability graph of any given bin packing instance can
be constructed as G̃ = (Ṽ , Ẽ), where Ṽ represents all the
virtual tasks with each vertex ṽi,k ∈ Ṽ representing a virtual
task ui,k. There is a directed link from vertex ṽi,k to ṽj,m, if
ci,k−s(ui) = cj,m, i.e., Ẽ = {(ṽi,k, ṽj,m)|ci,k−s(ui) = cj,m}.
With the shareability graph G̃, the bin packing problem is
to find K paths in the graph to traverse each virtual task
set exactly once, and every path can be seen as a bin. Then,

the bin packing problem can be reduced to VTSPC on the
shareability graph G̃. We claim that the bin packing problem
has a solution within K bins, if and only if we can find at
most K paths in G̃ to cover all the set once. If we can solve
VTSPC efficiently, the same algorithm can be applied to
tackle the bin packing problem. Therefore, we successfully
construct a reduction from bin packing to VTSPC.

Here we give an example to show how the reduction
works in Figure 4. We have four four items with size 3, 2,
4 and 1 with capacity B = 5. Figure 4(a) is the shareability
graph we constructed. The vertices in the same color are
from the same virtual task set. The first blue vertex labeled
with (3, 5) represents the size of this item is three and before
it is put in a bin, the remaining capacity of the bin is 5. There
is an edge between (3.4) and (1, 1) because after taking
the item with size 3 into the bin, the remaining capacity
1 is enough to hold the item with size 1. In Figure 4(b),
we show an eligible virtual task set path covering. The
path {(3, 5), (2, 2)} is interpreted as we can put the items
corresponding to the blue and green vertices together in
one bin. Then, we want to ask whether K paths are enough
to cover all the set exactly once. That is just our VTSPC
problem.

(3,5) (3,4) (3,3) (2,5) (2,4) (2,3) (2,2)

(4,5) (4,4) (1,5) (1,4) (1,3) (1,2) (1,1)

(3,5) (3,4) (3,3) (2,5) (2,4) (2,3) (2,2)

(4,5) (4,4) (1,5) (1,4) (1,3) (1,2) (1,1)

(a) An example of the shareability
graph for bin packing problem.

(3,5) (3,4) (3,3) (2,5) (2,4) (2,3) (2,2)

(4,5) (4,4) (1,5) (1,4) (1,3) (1,2) (1,1)

(3,5) (3,4) (3,3) (2,5) (2,4) (2,3) (2,2)

(4,5) (4,4) (1,5) (1,4) (1,3) (1,2) (1,1)

(b) An example of an eligible vir-
tual task set path covering.

Figure 4: An illustration on how to reduce from bin packing to VTSPC.

The complexity of our reduction is just the complexity of
construction the graph G̃ = (Ṽ , Ẽ) . It takes

∑
i s(ui) steps

to construct all the nodes, which can be upper bounded
by |U |C . As for constructing the edges, the complexity
can never exceed O(|U |2C2), which is the complexity of
constructing a complete graph. Thus, the reduction can be
finished in polynomial time with order O(|U |2C2). Besides,
given a set of path set, it is easy to check whether all the
virtual task set is traversed exactly once, which guarantees
the decision version of VTSPC is NP. Therefore, the decision
version of VTSPC is NP-complete.

As the decision version of VTSPC is already NP-
complete, we naturally have the following Corollary 1 on
the NP-hardness of the VTSPC problem itself.

Corollary 1. The VTSPC problem is NP-hard.

Next, we show that VTSPC is not only NP-hard, but also
hard to approximate, by a gap-introducing reduction from the
VTS Hamiltonian path (VTS-HP) problem defined in Definition
8 to VTSPC.

Definition 8 (VTS-HP Problem). Given a shareability graph
Ge = (Ve, Ee), a VTS Hamiltonian path is a path in Ge that

6

traverses each virtual task set exactly once. The problem of finding
such VTS Hamiltonian path is referred to as the VTS Hamiltonian
path (VTS-HP) problem.

Next, we state in the following Lemma 1 that the VTS-
HP problem is NP-complete.

Lemma 1. The VTS-HP problem is NP-complete.

Proof. We prove this theorem by performing a reduction
from the NP-complete directed Hamiltonian path problem
[13]. There is an obvious observation that if each virtual
task set Si owns only one element, i.e., every vertex itself is
a virtual task set, the VTS-HP problem is just the traditional
directed Hamiltonian Path problem which is NP-complete [13].
Thus if the VTS-HP problem can be solved in polynomial
time perfectly, the directed Hamiltonian Path problem can
also be solved efficiently, because it is simply a special
case of the VTS-HP problem. In other words, the directed
Hamiltonian path problem is a special case of the VTS-
HP problem. It is obvious that, given a path, we can easily
judge whether it traverses each virtual task set. Therefore,
the VTS-HP problem is NP-complete.

Based on Lemma 1, we next perform a gap-introducing
reduction from VTS-HP to VTSPC to show the hardness of
approximation in the following Theorem 3.

Theorem 3. ∀ε > 0, there is no factor (2 − ε)-approximation
polynomial-time algorithm for the VTSPC problem.

Proof. Assuming that f(·) is a mapping from one instance of
VTS-HP to one instance of VTSPC, we set f(G) = G, where
G is the graph constructed in the VTS-HP problem. It means
VTS-HP and VTSPC share the same input graph. If there
exists a VTS Hamiltonian path in graph G, the path itself is
the optimal solution for the VTSPC problem. Otherwise, the
optimal solution of VTSPC will contain at least two paths.
Thus, we introduce an NP-hard gap [1, 2− ε]. According to
the (α, β) gap reduction in [2], we know that there is no
factor (2− ε)-approximation algorithm for VTSPC.

The idea behind the proof is that if there exits a VTS
Hamiltonian path in the shareability graph Ge, then the
optimal value of VTSPC problem is just 1, since the VTS
Hamiltonian path can be one of the optimal solutions.
However, in Lemma 1, we have shown that deciding the
existence of VTS Hamiltonian path is NP-complete. That
means the best result a polynomial-time algorithm can
guarantee is 2. Otherwise, the VTS-HP problem can be well
solved. Here, we have a gap ratio of 2.

4 PROPOSED ALGORITHMS

As shown in Section 3.2, although se-VTSPC can be solved
efficiently, the general VTSPC problem is NP-hard and even
hard to approximate. Therefore, in Section 4.1, we propose
the BM-se-VTSPC algorithm based on the Hungarian al-
gorithm [11] to get the optimal solution of the se-VTSPC
problem in polynomial time, and in Section 4.2, we propose
the LPF-VTSPC algorithm for the general VTSPC problem
and derive its approximation ratio.

4.1 BM-se-VTSPC Algorithm
As formulated in Section 3.1, the se-VTSPC problem is
equivalent to finding the minimum path cover in the spatio-
temporal task graph G = {V, E}, which can be realized
by utilizing the existing algorithm given in [9], referred
to as the bipartite matching-based se-VTSPC (BM-se-VTSPC)
algorithm in this paper. As details of the BM-se-VTSPC
algorithm could be found in [9], instead of providing the
detailed procedures, we only describe the major intuitions
behind the algorithm in the rest of this section.

The BM-se-VTSPC algorithm starts with constructing a
bipartite graph G′ = {V ′, E ′} based on the spatio-temporal
task graph G, by splitting each vertex τi into two vertices
τxi and τyi , and connecting τxi to τyj , if an edge from τi to
τj exists in G, i.e., V ′ =

{
τx1 , · · · , τxN

}⋃{
τy1 , · · · , τ

y
N

}
, and

E ′ =
{
(τxi , τ

y
j)|(τi, τj) ∈ E

}
.

By graph theory [10], we have that the minimum path
cover of the directed acyclic graph G and the maximum
matching of the bipartite graph G′ satisfies

|Min. path cover of G| = |V| − |Max. matching of G′| . (3)

Hence, the BM-se-VTSPC algorithm then utilizes the
Hopcroft-Karp algorithm [12] to find the maximum match-
ing M of graph G′, and let {(τi, τj)|(τxi , τ

y
j) ∈ M} be the

edges that constitute the chosen paths.
It is proved that the above BM-se-VTSPC algorithm has

the computational complexity with the order O(|E|
√
|V|)

[9].

4.2 Longest Path First VTSPC Algorithm
In this section, we present our Longest Path First VTSPC
(LPF-VTSPC) algorithm, which solves the VTSPC problem
with a guaranteed approximation ratio.

Our design philosophy of this algorithm is as follows.
If the virtual task to be traversed in each virtual task set
is given, the VTSPC problem reduces to the se-VTSPC
problem, whose optimal solution can be obtained in polyno-
mial time. As going through all combinations of vertices is
computationally intractable, we devise an efficient searching
scheme by looking for the longest path in the bus share-
ability graph until all the virtual task sets are traversed.
Although searching the longest path in a general graph is
NP-hard [13], such operation can be done in polynomial
time over the bus shareability graph, because it is a directed
acyclic graph. The LPF-VTSPC algorithm is shown in the
following Algorithm 1, and a detailed complexity analysis
of the algorithm is provided in Theorem 5.

The input of the LPF-VTSPC algorithm is the bus share-
ability graph Ge. Algorithm 1 starts with initializing an
empty chosen path set P̂ (line 1). The main loop (line 2-7) is
the process of iteratively searching the longest paths, as long
as the remaining graph Ge is non-empty. Specifically, in each
iteration, the algorithm searches the longest path p in the
current graph using topological sorting with O

(
|Ve| + |Ee|

)
computational complexity (line 3). Next, it lets V be the set
of vertices in the virtual task sets traversed by path p (line
5), removes V from the current vertex set Ve (line 6), and
removes the edges incident to these vertices from the current
edge set Ee (line 7). Finally, the algorithm returns the VTS
path cover P̂ (line 8).

7

Algorithm 1: The LPF-VTSPC Algorithm
Input: bus shareability graph Ge = (Ve, Ee);
Output: VTS path cover P̂ ;

1 P̂ ← ∅;
2 while Ge 6= ∅ do
3 find the longest path p of Ge using topological

sorting;
4 P̂ ← P̂ ∪ {p};

// Delete all vertices in the virtual
task sets traversed by p, and the
edges incident to them.

5 V ← {τi,k ∈ Si|Si
⋂
p 6= ∅};

6 Ve ← Ve \ V ;
7 Ee ← Ee \

{
(τi,k, τj,l) ∈ Ee|τi,k ∈ V or τj,l ∈ V

}
;

8 return P̂ ;

Now, we need to verify the eligibility of the longest path,
i.e., the longest path should not traverse the same virtual
task set more than once. We formally state the result in
Therorem 4.

Theorem 4. For any given bus shareability graph Ge, any path
P in Ge will not traverse one virtual task set more than once.

Proof. We carry out the proof by contradiction. Assume a
path traverse one virtual task twice. Without loss of gen-
erality, let P traverse the virtual task sets corresponding to
v1 = (s1, s2, to1 , td1), v2 = (s2, s1, to2 , td2) and v1 sequen-
tially (i.e., P traverse virtual task of v1 twice). The edge from
v1 to v2 indicates td1 < to2 and the one from v2 to v1 implies
td2 < to1 . With the to2 < td2 , we have td1 < to2 < td2 < to1
which implies that td1 < to1 , i.e., the bus finishes the trip
before it starts. Thus, we have a contradiction, and draw
the conclusion that any path P in Ge will not traverse one
virtual task set more than once.

Next, in Theorem 5, we prove that Algorithm 1 has a
polynomial-time computational complexity.

Theorem 5. The computational complexity of Algorithm 1 is
O
(
|Ve|2 + |Ee||Ve|

)
.

Proof. In the bus shareability graph Ge, which is a DAG,
the computational complexity of finding the single source
longest path by topological sorting is O(|Ve|+ |Ee|) [10]. In
the bus shareability graph, only one virtual task for each
bus line that leaves the origin station earliest can be the
candidate source for the longest path. The complexity in
each iteration is O

(
k(|Ve| + |Ee|)

)
where k is the number

of lines. It is obvious that k � |Ve| + |Ee|, and thus
O
(
k(|Ve| + |Ee|)

)
≈ O(|Ve| + |Ee|). In the worst case, the

number of iterations can be no larger than |Ve|. Therefore,
the total complexity is O(|Ve|2 + |Ee| |Ve|).

Next, we provide formal theoretical analysis of the ap-
proximation ratio of Algorithm 1 in the following Theorem
6.

Theorem 6. The approximation ratio of Algorithm 1 is γ+1
2

(
1+

ln 2γ
γ+1

)
, where γ denotes the length of the longest path in the bus

shareability graph Ge.

Proof. We start the proof of this theorem by introducing
some extra notations. We use OPT to denote the optimal
solution for VTSPC, OPTi to denote the optimal solution
after we have picked up i longest paths, i.e., it is the
optimal solution after the ith iteration of Algorithm 1, and
fi to denote the number of virtual task sets that have been
covered after i iterations. Thus, the remaining number of
virtual task sets that need to be covered is N − fi after i
iterations, and we arrive at the following conclusion that

OPTi ≤ N − fi, (4)

which means that the optimal number of paths can never
exceed the remaining number of virtual task sets, as one
path has to cover at least one virtual task. Furthermore, we
have another observation on the relationship between OPT
and fi, shown in the Lemma 2.

Lemma 2. The optimal solution after i iterations OPTi cannot
be greater than the sum of the number of vertices covered in the
ith iteration and OPTi−1, i.e.,

OPTi ≤ (fi − fi−1) + OPTi−1. (5)

As the proof of Lemma 2 is intuitive, we omit it in this
paper. Intuitively, if we take one vertex off one path, the
path breaks at most into two paths. If we take two off, the
path breaks at most into three paths. Based on this idea, the
OPTi−1 paths will break at most into (fi − fi−1) + OPTi−1
paths, because in the ith iteration we cover fi− fi−1 virtual
task sets. Therefore, we can confirm that there is a feasible
solution generated from the optimal solution of last iteration
whose cardinality is at most (fi − fi−1) + OPTi−1. The
optimal solution of OPTi is thus surely no greater than
(fi − fi−1) + OPTi−1. In this way, we iteratively expand
OPTi using Inequality (5) as

OPTi ≤ (fi − fi−1) + OPTi−1 ≤ (fi − fi−2) + OPTi−2
≤ · · · ≤ fi + OPT. (6)

Thus far, we have two constraints on the OPTi, i.e., Con-
straints (4) and (6). Note that the term fi on the right hand
side of the two constraints has different signs. The right
hand side of Inequality (4) monotonically decreases with the
process, and Inequality (6) is exactly the opposite, which are
vital properties that will be used in the following proof.

Based on the different monotonicity of the right hand
side of Inequalities (4) and (6), they alternate to be a tighter
bound for OPTi. When Inequality (6) is tighter,

fi + OPT ≤ N − fi,

which can easily be simplified as fi ≤ N−OPT
2 . We then di-

vide the scale-down process into two steps by the threshold
k (i.e., fk ≤ N−OPT

2 < fk+1).
For the iteration i ≤ k, as we use a greedy algorithm to

find the longest path, we have

fi − fi−1 ≥
N − fi−1
OPTi−1

.

With Constraint (6), which is tighter, we have that

fi − fi−1 ≥
N − fi−1
OPTi−1

≥ N − fi−1
fi−1 + OPT

≥ N − fi−1
1
2 (N + OPT)

.

8

The above inequality can be transformed into(1
2
N +

1

2
OPT

)
(N − fi) ≤

(1
2
N +

1

2
OPT− 1

)
(N − fi−1).

Again, by using an iterative method, we have

(N − fi) ≤
(
1− 2

N + OPT

)
(N − fi−1) ≤ · · ·

≤
(
1− 2

N + OPT

)i
N ≤ N exp

(
− 2k

N + OPT

)
.

With f(Ai) ≤ N−OPT
2 , we have

N + OPT
2

≤ N exp
(
− 2k

N + OPT

)
.

Then, we can obtain

k ≤ N + OPT
2

ln
(2N

N + OPT

)
.

In the second stage, the rest number of vertices are no
greater than N+OPT

2 , and the total step g satisfies

g ≤ k + N + OPT
2

=
N + OPT

2

(
1 + ln

2N

N + OPT

)
.

Then, ratio of g
OPT satisfies that

g

OPT
≤

N
OPT + 1

2

(
1 + ln

2

1 + OPT
N

)
.

As N
OPT ≤ γ, where γ is the length of the longest path,

g

OPT
≤ γ + 1

2

(
1 + ln

(2γ

γ + 1

))
.

Thus far, we have finished the proof of this theorem.

If the length γ of the longest path in the bus shareability
graph is 1, which means no vertices are connected with each
other, the approximation ratio is 1. In such extreme case,
the output of the LPF-VTSPC algorithm coincides with the
optimal solution. In real-world systems, the value of γ is
typically small enough so that the approximation ratio given
in Theorem 6 is meaningful in practice.

In real world e-bus systems, sometimes we want to avoid
keeping the same bus continuously traveling for extremely
long time in one day. For instance, eight hours may seem
reasonable for one e-bus. Under such constraint, our LPF-
VTSPC algorithm can be easily modified to satisfy. Since we
are finding the longest path in each iteration, if one path is
longer than eight hours, we just take the dispatching tasks
covered in the first eight hours and keep the remaining tasks
in the graph waiting for other paths to cover them.

5 EXPERIMENTS

In this section, we describe and analyze the large-scale e-
bus dataset utilized in our experiments, provide our insights
based on analysis of the dataset, evaluate our algorithms by
extensive experiments, and present our experiment results.

5.1 Dataset and Analysis
Our experiments in this paper are based on a 311GB histor-
ical GPS dataset of 16,359 e-buses from Shenzhen, the 4th
largest city in China. The time span of the dataset is from

Figure 5: An illustration of the spatial distribution of the 12, 229 bus
stops’ locations in Shenzhen, where the larger and brighter the point is,
the more bus lines pass the stop.

Figure 6: An illustration of the spatial distribution of the 1,670 origin
and terminal stations in Shenzhen.

June 1st to June 30th, 2017. Every piece of record consists
of 16 parameters describing the current operating status of
a bus, among which the ones that are relevant to this paper
include system time, bus license plate number, line number, cur-
rent longitude and latitude, current speed, and current direction.
Moreover, if a bus is approaching a bus stop, there will be
3 more parameters, i.e., ID of the bus stop, approaching time,
and ID of the next bus stop. An example piece of data in
the dataset is shown in Table 1. Unfortunately, we do not
have the information related to electricity consumption in
our dataset. We measure the lengths of the trajectories of
each line and compare them with the maximal covering
range of a fully-charged battery to get estimations. Next,
in the following Figures 8-11, we show the results of our
data analysis based on this dataset.

0 10 20 30 40 50 60

Number of lines sharing a terminal station

0

0.2

0.4

0.6

0.8

1

P
er

ce
n

ta
g
e

Figure 7: CDF of the number of lines passing a terminal station

9

System Time Bus License Number Line Number Longitude Latitude
2017-6-1 0:0:29 BS03981D 03060 114.133835 22.564110
Speed Direction Bus Stop ID Approaching Time ID of Next Stop
3036.47 44 F BJ0108 17-6-1 0:0:28 F BJ0141

Table 1: An example piece of data extracted from the dataset.

0 20 40 60 80 100
Length of Lines (km)

0

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge (20, 0.65)

(40, 0.92)

Figure 8: CDF of the lengths of bus
lines.

0 2 4 6 8 10 12 14

Daily Operating Hours (h)

0

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge (8, 0.73)

Figure 9: CDF of e-buses’ operating
hours.

0 10 20 30 40 50 60 70 80
0

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

(7, 0.57)

(20, 0.82)

Number of Buses for Each Line

Figure 10: CDF of each line’s num-
ber of buses.

2 4 6 8 10

10 4

10 3

10 2

10 1

1

Pe
rc

en
ta

ge

Number of Lines One Bus Serves

Figure 11: PDF of the number of
lines a bus serves.

• Bus stops. There are 12, 229 bus stops recorded in the
dataset. The operating frequency and spatial distribution
of these stops are shown in Figure 5. The larger and
brighter the point is, the more bus lines pass this stop.
Figure 5 demonstrates that the most frequently used stops
are located in urban areas, although the stops are widely
distributed across the whole city.

• Origin and terminal stations. Origin and terminal sta-
tions are different from intermediate bus stops in our
problem, because charging facilities are usually located
near these stations [1]. Figure 6 shows the spatial distribu-
tion of the 1,670 origin and terminal stations in Shenzhen,
which we obtain from our dataset. We can observe that
the density of the origin and terminal stations is much
higher in downtown than in rural areas. Figure 7 shows
that about 30% stations play a role as the terminal station
of 1 line. For the busiest station, 59 lines take it as their
terminal station.

• Bus line lengths. The CDF of the lengths of bus lines in
Shenzhen is given in Figure 8, which shows that 65% of
the bus lines are no more than 20 kilometers, and 92% of
the bus lines are no more than 40 kilometers. Therefore,
short- and medium-range ones constitute the majority of
the bus lines in Shenzhen.

• Daily operating hours. Figure 9 shows the CDF of the
daily operating hours of the e-buses in Shenzhen, from
which we observe that such distribution is highly unbal-
anced. Specifically, more than 80% of the e-buses serve
less than 8 hours every day. Furthermore, we observe
that more than 83% bus lines only operate during 6:00-
23:00, whereas there are still 16% of them operating during
23:00-6:00. Among those that operate during 23:00-6:00,
there are 4 lines that only operate during those hours.

• Number of buses per line. From our dataset, we observe
that some lines have many buses serving them, whereas
others have fewer. Figure 10 shows that 57% bus lines
have less than 7 buses, but 20% of them have more than
20 buses.

• Cross-line serving. Figure 11 shows the number of lines
that an e-bus serves in Shenzhen based on our dataset.
We can observe that although there are already e-buses
serving multiple lines, more than 99% e-buses still serve
only one line, which leaves great room for us to explore
the power of cross-line dispatching in Shenzhen’s e-bus
system.

5.2 Experiment Results
5.2.1 Experiments for Evaluating BM-se-VTSPC

4 6 8 10 12 14 16 18 20 22 24

Number of Lines

40

60

80

100

120

140

160

180

200

N
u

m
b

er
 o

f
B

u
se

s

Baseline (without cross-line dispatching)

BM-se-VTSPC

Figure 12: BM-se-VTSPC with
multiple lines that share the sta-
tion s5.

10 15 20 25 30 35 40 45 50

Number of Lines

200

300

400

500

600

700

800

900

N
u

m
b

er
 o

f
B

u
se

s

Baseline (without cross-line dispatching)

BM-se-VTSPC

Figure 13: BM-se-VTSPC with
multiple randomly chosen bus
lines.

We evaluate the performance of our BM-se-VTSPC algo-
rithm on our real-world dataset, and compare it with the
baseline dispatching algorithm that does not consider cross-
line dispatching, where we run BM-se-VTSPC for each line
separately and sum all the results.

Figure 12 shows our experiment result for the scenario
where 23 bus lines share the bus station s5 with GPS co-
ordinate (114.058, 22.537) as the origin or terminal stations.
This figure shows that our BM-se-VTSPC algorithm obvi-
ously outperforms the baseline strategy without cross-line
dispatching. As the number of lines increases, the advantage
of BM-se-VTSPC becomes more and more obvious. Figure
13 corresponds to the experiments, where we consider 10,
20, 30, 40, and 50 randomly chosen bus lines in Shenzhen,
which do not necessarily share origin or terminal stations.
From this figure, we can observe that BM-se-VTSPC reduces
25% buses needed by the baseline strategy, when 50 lines are
jointly optimized.

Figure 14 corresponds to a city-scale experiment where
836 lines operating in Shenzhen are considered. We don’t
take into account all bus lines in Shenzhen because some
lines are with noisy or missing GPS data. In the figure,
we show that with 20, 40, 60, 80, 100 percent of the total
836 lines covered, BM-se-VTSPC algorithm reduces about
600 to 2,000 buses compared to the true value and about

10

20 40 60 80 100

Percentage of lines covered

0

2000

4000

6000

8000

10000

N
u

m
b

er
 o

f
b

u
se

s

BM-se-VTSPC

Baseline (without cross-line dispatching)

True value

Figure 14: BM-se-VTSPC with city-scale 836 bus lines.

300 to 1,000 buses compared to the scheme without cross
line dispatching. Although the true value considers a small
amount of cross-line dispatching already, it is not optimized
in scheduling a single bus line, which means there are some
redundant buses. However, our baseline is optimized for
each single bus line separately without cross-line dispatch-
ing. Therefore, the true value is worse than our baseline
result.

5.2.2 Experiments for Evaluating LPF-VTSPC with Two
Common Bus Line Topologies

Line 𝑙ଷ
Line 𝑙ସ

(a) Topology 1.

Line 𝑙ହ
Line 𝑙଺

Line 𝑙଻

(b) Topology 2.

Figure 15: An illustration of the two common topologies with which we
evaluate LPF-VTSPC. Topology 1 in Figure 15(a) has two lines l3 and l4
that share the same origin and terminal stations. Topology 2 in Figure
15(b) has three lines l5, l6, and l7 that form a triangle.

In our experiments, we evaluate the LPF-VTSPC algo-
rithm with two common bus line topologies in Shenzhen’s
bus system, shown in Figure 15, where Figure 15(a) shows
topology 1 with bus lines l3 and l4 that share the same origin
and terminal stations, and Figure 15(b) shows topology 2
with three lines l5, l6, and l7 that form a triangle. We set
the timetables for different lines to be different yet fixed
in our experiments, and let the electricity consumption and
trip duration to be the same for dispatching tasks of the
same line. Detailed parameter settings for lines l3-l7 are in
Table 2. The baseline strategy is applying LPF-VTSPC to
each line separately and sum all the results up, i.e., without
considering cross-line disaptching.

Figure 16 shows that, as line l4’s electricity consump-
tion varies, LPF-VTSPC ensures that the number of buses
needed to serve lines l3 and l4 remains relatively small,
and almost stops increasing after line l4’s electricity con-
sumption reaches 15%, whereas more e-buses are needed, if
we use the baseline algorithm that does not consider cross-
line dispatching. Figures 18 and 17 demonstrate similar

Line Task No. Con. Tr. Int. St.
l3 40 60% 120 5 7:00
l5 40 60% 120 5 7:00
l6 30 35% 70 15 6:35

l4 (Set. 1) 30 [10%, 40%] 70 15 6:35
l4 (Set. 2) 30 35% [40, 70] 15 6:35
l4 (Set. 3) 30 35% 70 [15, 40] 6:35
l7 (Set. 1) 20 [5%,65%] 40 5 6:15
l7 (Set. 2) 20 20% [30, 80] 5 6:15
l7 (Set. 3) 20 20% 40 [3,12] 6:15

l8 40 50% 120 5 7:00
l9 30 35% 70 15 6:35

l10 (Set. 1) 20 [10%,40%] 40 5 6:15
l10 (Set. 2) [20,45] 20% 40 5 6:15
l10 (Set. 3) 20 20% 40 [3,15] 6:15

Table 2: Detailed parameter settings for lines l3-l10, where Con. refers to
the electricity consumption of each trip, Tr. refers to the trip time (min),
Int. refers to the dispatching interval (min), St. refers to the starting time
of each line, and Set. refers to Setting.

10 15 20 25 30 35 40

Electricity Consumption of One Trip (%)

80

85

90

95

100

105

110

N
u

m
b

er
 o

f
B

u
se

s

Baseline (without cross-line dispatching)

LPF-VTSPC

Figure 16: Vary l4’s electricity
consumption under Topo 1.

15 20 25 30 35 40

Dispatching Interval (min)

85

90

95

100

105

110

N
u

m
b

er
 o

f
B

u
se

s

Baseline (without cross-line dispatching)

LPF-VTSPC

Figure 17: Vary l4’s dispatching
interval under Topo 1.

patterns as Figure 16, in which we vary l4’s trip duration
and dispatching interval, respectively.

40 45 50 55 60 65 70

Duration of One Trip (min)

90

95

100

105

110

115

N
u

m
b

er
 o

f
B

u
se

s

Baseline (without cross-line dispatching)

LPF-VTSPC

Figure 18: Varying line l4’s trip
duration under Topo 1.

10 20 30 40 50 60

Electricity Consumption of One Trip (%)

100

105

110

115

120

125

130

135

140

145

N
u

m
b

er
 o

f
B

u
se

s

Baseline (without cross-line dispatching)

LPF-VTSPC

Figure 19: Vary l7’s electricity
consumption under Topo 2.

Figures 19-21 shows the results of evaluating LPF-
VTSPC under topology 2 where lines l5-l7 form a triangle.
Figures 19-21, respectively, show that LPF-VTSPC requires
much less number of e-buses to serve the three lines com-
pared with the baseline algorithm without cross-line dis-
patching, if we vary line l7’s electricity consumption, trip
duration, and dispatching interval.

5.2.3 Experiments for Evaluating LPF-VTSPC with Differ-
ent Charging Facility Placements
In this set of experiments, we evaluate the effect of different
charging facility placements on LPF-VTSPC’s performance.
Such experiments are meaningful in practice as the high cost
of constructing and maintaining e-bus charging facilities
makes it infeasible to build them at all bus stations. In

11

30 40 50 60 70 80

Duration of One Trip (min)

100

105

110

115

120

125

130

135

140

N
u

m
b

er
 o

f
B

u
se

s
Baseline (without cross-line dispatching)

LPF-VTSPC

Figure 20: Varying line l7’s trip
duration under Topo 2.

3 4 5 6 7 8 9 10 11 12

Dispatching Interval (min)

95

100

105

110

115

120

125

130

N
u

m
b

er
 o

f
B

u
se

s

Baseline (without cross-line dispatching)

LPF-VTSPC

Figure 21: Vary l7’s dispatching
interval under Topo 2.

Line 𝑙଼
Station 𝑠ଵ

Station 𝑠ଶ

Station 𝑠ଷ

Station 𝑠ସ
Line 𝑙ଽ

Line 𝑙ଵ଴

Figure 22: An illustration of the possible locations of charging facilities.

our experiments, we consider three bus lines l8, l9, and l10
sharing station s1. The stations s1-s4 are the possible loca-
tions of charing facilities shown in Figure 22. Specifically, we
place charging facilities at all stations s1-s4 (placement 1), at
suburban stations s2-s4 (placement 2), and at the downtown
station s1 (placement 3), respectively. The detailed parame-
ter settings of lines l8-l10 are in Table 2.

From Figure 23, we can observe that no matter how
the parameters change, the number of buses needed when
all stations s1-s4 are equipped with charging facilities are
always less than that under the other two placements. It
shows that the increase of the number of charging facilities
can reduce the number of buses needed. Furthermore, Fig-
ure 23 shows that it is not obvious to decide which one of
placements 2 and 3 outperforms the other, and for each of
the three placements, the number of buses needed does not
change significantly, even if the parameters vary sharply.

10 15 20 25 30 35 40

Electricity Consumption of One Trip (%)

85

90

95

100

105

N
u

m
b

er
 o

f
B

u
se

s

Placement 1

Placement 2

Placemnet 3

(a) Vary l10’s electricity consump-
tion.

4 6 8 10 12 14

Dispatching Interval (min)

80

85

90

95

100

N
u

m
b

er
 o

f
B

u
se

s

Placement 1

Placement 2

Placemnet 3

(b) Vary l10’s dispatching interval.

Figure 23: LPF-VTSPC with the charging facility placements 1, 2, and 3.

5.2.4 Experiments for Evaluating LPF-VTSPC with City-
Scale Dataset
In this set of experiments, we choose three busy stations s5,
s6, and s7 with GPS coordinates (114.058, 22.537), (114.016,
22.529), and (114.084, 22.551), respectively, in Shenzhen, and
consider the 23 lines that share station s5, and the 67 lines
that share all three stations s5-s7. We compare LPF-VTSPC
with ground truths which represent the number of e-buses
actually utilized by those lines in our dataset.

8 10 12 14 16 18 20 22

Number of Lines

100

150

200

250

300

N
u

m
b

e
r
 o

f
B

u
s
e
s

Real Value
LPF-VTSPC

Figure 24: LPF-VTSPC with mul-
tiple lines that share the station
s5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
 o

f
th

e
 N

u
m

b
e
r
 o

f
B

u
s
e
s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Lines that One Bus Serves

0

5

10

15

20

25

N
u

m
b

e
r
 o

f
B

u
s
e
s

Figure 25: PDF and CDF of the
number of lines each bus serves
(23 lines).

15 20 25 30 35 40 45

Number of Lines

200

300

400

500

600

700

800

N
u

m
b

e
r
 o

f
B

u
s
e
s

Real Value
LPF-VTSPC

Figure 26: Evaluation of LPF-
VTSPC with the 47 lines that
share stations s5 and s6.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
 o

f
th

e
 N

u
m

b
e
r
 o

f
B

u
s
e
s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Number of Lines that One Bus Serves

0

10

20

30

40

50

60

N
u

m
b

e
r
 o

f
B

u
s
e
s

Figure 27: PDF and CDF of the
number of lines each bus serves,
when we optimize all 47 lines.

20 25 30 35 40 45 50 55 60 65

Number of Lines

300

400

500

600

700

800

900

1000

1100

1200

N
u

m
b

e
r
 o

f
B

u
s
e
s

Real Value
LPF-VTSPC

Figure 28: LPF-VTSPC with mul-
tiple lines that share the stations
s5 -s7.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
 o

f
th

e
 N

u
m

b
e
r
 o

f
B

u
s
e
s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Number of Lines that One Bus Serves

0

10

20

30

40

50

60

70

80

90

100

N
u

m
b

e
r
 o

f
B

u
s
e
s

Figure 29: PDF and CDF of the
number of lines each bus serves
(67 lines).

From Figure 24, we can observe that the ground truth
value increases almost linearly with the number of lines,
while the number of e-buses required by LPF-VTSPC grows
at a much slower rate. Figure 24 shows that, when we jointly
optimize 23 lines, only 41.3% of the ground truth value is
need to complete all dispatching tasks. Figure 25 shows the
number of lines every e-bus serves and the CDF when we
jointly optimize 23 lines. It shows that 92.1% e-buses serve
multiple lines, and 50.4% serve over 5 lines.

Figure 26 and 28 show similar trends as Figure 24, and
42.2% and 45.1% of the ground truths are need by the LPF-
VTSPC algorithm when we jointly optimize 47 lines (Figure
26) and 67 lines (Figure 28), respectively. In Figure 27, we

12

observe that when jointly optimizing 47 lines, 9.0% e-buses
serve only one line and 53.9% of them serve more than 5
lines, whereas, if we consider 67 lines jointly, 15.0% e-buses
serve only one line and 48.0% of them serve more than 5
lines.

Next, we further scale up the number of lines considered
in our experiments, and randomly choose 20, 50, 100, 200,
and 300 lines from Shenzhen’s bus systems. When the num-
ber of lines is relatively small, the lines have little chance
to share the same origin and terminal stations because of
the randomness in choosing the lines in our experiments,
and thus we can observe limited difference between the
results of LPF-VTSPC and the ground truths for small line
numbers in Figure 30. With the increase of the scale, more
lines have the chances to share one bus, and the advance
of LPF-VTSPC over the ground truths becomes increasingly
obvious. Based on Figure 30, when we jointly consider 300
lines, LPF-VTSPC uses 61.8% of the ground truth to satisfy
all dispatching tasks.

50 100 150 200 250 300

Number of Lines

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

N
u

m
b

e
r
 o

f
B

u
s
e
s

Real Value
LPF-VTSPC

Figure 30: LPF-VTSPC with multiple (up to 300) randomly chosen lines.

6 RELATED WORK

In the past few years, optimization for the urban transporta-
tion system [14–17] with EVs has always been a voguish
research topic. Firstly, in order to establish an efficient EV
network, fundamental researches have been done, such as
the operating patterns of a typical EV network [18] and the
electricity power allocation in the grid to supply the charg-
ing stations [19]. [17] proposed to predict demand for EV
sharing systems with data-driven method. Secondly, based
on these studies, advanced researches have been done on
managing and settling charging stations. From the charging
service providers’ point of view, researches [20] have been
carried out on developing a win-win scheme of pricing
charging services, which can improve revenue and promote
satisfaction. Furthermore, charging station coordination un-
der different constraints are also widely studied [21]. In this
paper, we optimize the dispatching scheme for bus service
providers, while the above papers focus on optimizing for
charging stations.

Thirdly, scheduling and routing problems for EVs, par-
ticularly in public transportation systems, have aroused
attention. There are many approaches to solving the general
vehicle routing problem [22]. [22] proposes novel machine
learning framework to find the optimal path. Moreover,
novel routing methods for EVs and buses have also been

introduced and buses [23–25], where [23] tries to minimize
passenger waiting time in the routing process, [24] is a data-
driven method with multiple objectives, and [25] aims at
planning the best path queries from a language process-
ing perspective. However, some route planning algorithms
[23, 24] are routing algorithms for a single vehicle, while we
solve the bus dispatching problem in fleet scale. The others
[25] are routing methods for regular vehicles, and thus do
not consider charging for EVs, while our problem consists
of both routing and charging scheduling, which makes
the general routing algorithms inapplicable. Furthermore,
a great number of papers [26–37] have studied charging
scheduling and battery management of EVs in various
situations, mainly considering when and where to charge in
order to obtain less waiting time and cost. For example, [32]
proposes a reputation-based fair power allocation for EVs in
the smart grid. [33] considers ADMM-Based decentralized
charging problem with trip duration limits. [28] balances
cost and dissatisfaction in online EV Charging under real-
time pricing. The previous researches on scheduling for EVs
put attention on reducing operation cost or waiting time
for charging by scheduling, with the conditions are set on
a fixed number of buses, while our paper is the first study
that aims to reduce cost by minimizing the number of buses.
Our method would be more applicable for those who are
building a new bus system.

[1, 38–42] study the scheduling algorithm for urban e-
buses. [1] applies Markov Decision Process to determine
whether and how long a bus should charge at a station,
but they do not address the bus dispatching problem, while
we combine bus dispatching with charging scheduling, and
aim at minimizing the bus fleet. [38] focuses on a wirelessly
charged bus system and proposes an optimal charging
scheme that can minimize the charging cost for such a
system. [39] creates a data-driven method to provide routing
instructions from station to stations, while we optimize the
bus system by determining which lines a bus should serve.
[40] mines through bus transportation data to extract the
mobility demand for passengers. [41] considers jointly the
e-bus routing and the charing infrastructure under partial
charging of the batteries. [42] considers a battery-lifetime-
aware scheduling for e-bus fleet. The system can be applied
to situations that require passenger mobility data, such as
traffic anomaly detection, but we suppose that the timetable
for buses has been pre-set to satisfy the passenger’s mobility
needs.

Besides, graph theory has attracted many attentions on
dispatching in urban mobility systems [43, 44]. [43] consid-
ers the taxi-pooling problem, where they also named their
graph as shareability networks. Although we have the same
name, our work is significantly different from theirs in the
following aspects. The goal of [43] is to balance the trade-
off between collective benefits of sharing and degradation
of the passengers’ comfort. However, we try to minimize
the total number of e-buses, which is the first obvious dif-
ference. Also, instead of only considering the characteristics
of dispatching tasks, in our work we have to also consider
the status of our e-buses. Furthermore, the difficulty of the
two problems is different. Problem formulated in [43] can be
well solved in polynomial time. Our problem, in contrast, is
NP-hard. These points make our work very different with

13

theirs. The minimum fleet problem for urban ridesharing-
free mobility-on-demand systems has already been studied
by a pioneering work in Nature [44]. E-buses systems are
quite different with mobility-on-demand systems, where the
routings can be personalized and the covering limits can be
ignored for diesel vehicles.

To summarize, previous works on charging scheduling
mainly focuses on reducing operation cost or waiting time,
and the works on routing either do not consider charging
or are only designed for single EVs. Different from all
the aforementioned prior literatures, this paper addresses a
brand new problem of minimizing the number of e-buses
with a novel cross-line dispatching algorithm that takes
charging scheduling into consideration.

7 CONCLUSION

In this paper, we propose to systematically exploit at city-
scale cross-line dispatching, a novel smart dispatching strat-
egy that allows one bus to serve multiple bus lines, in
order to minimize the number of e-buses needed to satisfy
the public transportation demands in urban e-bus systems.
We adopt novel graph-theoretic methods to construct a
generalizable model capturing various real-world factors,
such as, the spatio-temporal relationships among bus trips,
e-buses’ recharging actions, and many others. Theoretically,
we formulate the cross-line dispatching optimization prob-
lem as a combinatorial optimization over the constructed
graph. Moreover, we prove that such problem is NP-hard
with no (2− ε)-approximation algorithms. We next propose
a polynomial-time algorithm that solves the problem with
a guaranteed γ+1

2

(
1 + ln 2γ

γ+1

)
approximation ratio. Exper-

imentally, we conduct extensive experiments on a large-
scale real-world e-bus dataset from Shenzhen containing the
trajectories of 16,359 buses within the time span from June
1st to June 30th, 2017, which validates the effectiveness of
our algorithms.

In the future, we will focus on the robustness of our
system and algorithm. For example, how to deal with e-bus
breaking down halfway and temporary route adjustments
are still open questions. Besides, battery aging and renewal
is also an important factor worth considering, especially in
the long term.

ACKNOWLEDGMENT
This work was supported in part by National Key R&D
Program of China 2018AAA0101200, in part by NSFC
China (No. 61902244, U20A20181, 62061146002, 61829201,
61832013, 61960206002, 42050105), in part by Shanghai
Municipal Science and Technology Commission Grant
(19YF1424600, 18XD1401800), in part by Tencent AI Lab
Rhino-Bird Focused Research Program JR202034, and in part
by Shanghai Key Laboratory of Scalable Computing and
Systems.

REFERENCES
[1] G. Wang, X. Xie, F. Zhang, Y. Liu, and D. Zhang, “bcharge:

Data-driven real-time charging scheduling for large-scale
electric bus fleets,” in IEEE Real-Time Systems Symposium
(RTSS), 2018.

[2] V. V. Vazirani, “Approximation algorithms.” Springer-
Verlag Berlin Heidelberg, 2003.

[3] Z. He, C. Chow, and J. Zhang, “Stann: A spatio-temporal
attentive neural network for traffic prediction,” IEEE Ac-
cess, vol. 7, pp. 4795–4806, 2019.

[4] C. Zheng, X. Fan, C. Wang, and J. Qi, “Gman: A graph
multi-attention network for traffic prediction,” in AAAI
Conference on Artificial Intelligence, 2020.

[5] W.-C. Lee, W. Si, L.-J. Chen, and M. C. Chen, “Http: a
new framework for bus travel time prediction based on
historical trajectories,” in ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems,
2012.

[6] A. AbdelAziz, A. Shoukry, W. Gomaa, and M. Youssef,
“Trans-sense: Real time transportation schedule estimation
using smart phones,” in IEEE International Conference on
Sensing, Communication and Networking (SECON), 2019.

[7] S. Moran, I. Newman, and Y. Wolfstahl, “Approximation
algorithms for covering a graph by vertex-disjoint paths of
maximum total weight,” Networks, vol. 20, no. 1, pp. 55–64,
2010.

[8] “The parameters for klq6129gq1,” http://www.higer.
com/bus/1159.html, 2017.

[9] F. T. Boesch and J. F. Gimpel, “Covering points of a
digraph with point-disjoint paths and its application to
code optimization,” in J. ACM, 1977.

[10] J. A. Bondy, “Graph theory with applications.” Elsevier
Science Ltd, June 1976.

[11] J. Munkres, “Algorithms for the assignment and trans-
portation problems,” in Journal of the Society for Industrial
and Applied Mathematics, 1957.

[12] J. Hopcroft and R. Karp, “An n5/2 algorithm for maxi-
mum matchings in bipartite graphs,” in SIAM Journal on
Computing, 1973.

[13] M. R. Garey and D. S. Johnson, “Computers and in-
tractability: A guide to the theory of np-completeness,”
1978.

[14] J. Ye, L. Sun, B. Du, Y. Fu, X. Tong, and H. Xiong, “Co-
prediction of multiple transportation demands based on
deep spatio-temporal neural network,” in ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2019.

[15] M. Chiang, E. Lim, W. Lee, and A. T. Kwee, “Btci: A new
framework for identifying congestion cascades using bus
trajectory data,” in 2017 IEEE International Conference on
Big Data (Big Data), 2017.

[16] M. Yang, Y. Li, X. Zhou, H. Lu, Z. Tian, and J. Luo, “Infer-
ring passengers interactive choices on public transits via
ma-al: Multi-agent apprenticeship learning,” in Proceedings
of The Web Conference, 2020.

[17] M. Luo, B. Du, K. Klemmer, H. Zhu, H. Ferhatosmanoglu,
and H. Wen, “D3p: Data-driven demand prediction for fast
expanding electric vehicle sharing systems,” Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 2020.

[18] G. Wang, X. Chen, F. Zhang, Y. Wang, and D. Zhang,
“Experience: Understanding long-term evolving patterns
of shared electric vehicle networks,” in The 25th Annual
International Conference on Mobile Computing and Networking
(MobiCom), 2019.

[19] F. Kong, X. Liu, and I. Lee, “Joint rate control and demand
balancing for electric vehicle charging,” in IEEE Interna-
tional Conference on Internet-of-Things Design and Implemen-
tation (IOTDI), 2018.

[20] J. Mrkos, A. Komenda, and M. Jakob, “Revenue maxi-
mization for electric vehicle charging service providers
using sequential dynamic pricing,” in International Joint
Conference on Autonomous Agents and Multi-agent Systems
(AAMAS), 2018.

[21] B. Du, Y. Tong, Z. Zhou, Q. Tao, and W. Zhou, “Demand-
aware charger planning for electric vehicle sharing,” in
ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2018.

14

[22] S. A. Pedersen, B. Yang, and C. S. Jensen, “A hybrid learn-
ing approach to stochastic routing,” in IEEE International
Conference on Data Engineering (ICDE), 2020.

[23] J. C. Gareau, E. Beaudry, and V. Makarenkov, “An efficient
electric vehicle path-planner that considers the waiting
time,” in ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, 2019.

[24] A. Sarker, H. Shen, and J. A. Stankovic, “Morp: Data-
driven multi-objective route planning and optimization for
electric vehicles,” in Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 2018.

[25] A. Haryanto, M. Islam, D. Taniar, and M. Cheema, “Ig-
tree: an efficient spatial keyword index for planning best
path queries on road networks,” Proceedings of The Web
Conference, 2019.

[26] H. Dai, Y. Liu, G. Chen, X. Wu, T. He, A. X. Liu, and
Y. Zhao, “Scape: Safe charging with adjustable power,” in
IEEE/ACM Transactions on Networking, 2018.

[27] H. Dai, Y. Liu, G. Chen, X. Wu, T. He, A. X. Liu, and H. Ma,
“Safe charging for wireless power transfer,” in IEEE/ACM
Transactions on Networking, 2017.

[28] H. Yi, Q. Lin, and M. Chen, “Balancing cost and dissatis-
faction in online ev charging under real-time pricing,” in
International Conference on Computer Communications (IN-
FOCOM), 2019.

[29] H. Dai, H. Ma, A. X. Liu, and G. Chen, “Radiation
constrained scheduling of wireless charging tasks,” in
IEEE/ACM Transactions on Networking, 2018.

[30] L. Yan, H. Shen, Z. Li, A. Sarker, J. A. Stankovic, C. Qiu,
J. Zhao, and C. Xu, “Employing opportunistic charging
for electric taxicabs to reduce idle time,” in Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 2018.

[31] Y. Zhang, J. Chen, L. Cai, and J. Pan, “Ev charging network
design with transportation and power grid constraints,” in
International Conference on Computer Communications (IN-
FOCOM), 2018.

[32] A. Al Zishan, M. M. Haji, and O. Ardakanian, “Reputation-
based fair power allocation to plug-in electric vehicles
in the smart grid,” in 2020 ACM/IEEE 11th International
Conference on Cyber-Physical Systems (ICCPS). IEEE, 2020.

[33] G. He, Z. Chai, X. Lu, F. Kong, and B. Sheng, “Admm-
based decentralized electric vehicle charging with trip
duration limits,” in IEEE Real-Time Systems Symposium,
RTSS, 2019.

[34] P. Zhou, C. Wang, and Y. Yang, “Design and optimization
of electric autonomous vehicles with renewable energy
source for smart cities,” in IEEE Conference on Computer
Communications (INFOCOM). IEEE, 2020.

[35] G. Wang, W. Li, J. Zhang, Y. Ge, Z. Fu, F. Zhang,
Y. Wang, and D. Zhang, “sharedcharging: Data-driven
shared charging for large-scale heterogeneous electric ve-
hicle fleets,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 2019.

[36] Q. Tang, K. Wang, K. Yang, and Y. Luo, “Congestion-
balanced and welfare-maximized charging strategies for
electric vehicles,” IEEE Transactions on Parallel and Dis-
tributed Systems, 2020.

[37] A. Aveklouris, Y. Nakahira, M. Vlasiou, and B. Zwart,
“Electric vehicle charging: a queueing approach,” ACM
SIGMETRICS Performance Evaluation Review, 2017.

[38] C. Yang, W. Lou, J. Yao, and S. Xie, “On charging schedul-
ing optimization for a wirelessly charged electric bus
system,” in IEEE Transactions on Intelligent Transportation
Systems, 2018.

[39] X. Fei, O. Gkountouna, D. Pfoser, and A. Züfle, “Spa-
tiotemporal bus route profiling using odometer data,” in
ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, 2019.

[40] L. Meegahapola, T. Kandappu, K. Jayarajah, L. Akoglu,

S. Xiang, and A. Misra, “Buscope: Fusing individual &
aggregated mobility behavior for ”live” smart city ser-
vices,” in ACM International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2019.

[41] L. Karzel, “Vehicle scheduling and location planning of
the charging infrastructure for electric buses under the
consideration of partial charging of vehicle batteries,” in
Operations Research, 2020.

[42] S. Li, S. He, S. Wang, T. He, and J. Chen, “Data-driven
battery-lifetime-aware scheduling for electric bus fleets,”
Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 3, no. 4, pp. 1–22, 2019.

[43] P. Santi, G. Resta, M. Szell, S. Sobolevsky, S. H. Strogatz,
and C. Ratti, “Quantifying the benefits of vehicle pooling
with shareability networks,” Proceedings of the National
Academy of Sciences, vol. 111, no. 37, pp. 13 290–13 294, 2014.

[44] M. M. Vazifeh, P. Santi, G. Resta, S. H. Strogatz, and
C. Ratti, “Addressing the minimum fleet problem in on-
demand urban mobility,” Nature, vol. 557, no. 7706, pp.
534–538, 2018.

Chonghuan Wang received the B.S. degree
from Shanghai Jiao Tong University, Shanghai,
China, in 2020. He is now a Ph.D. student of
Lab for Information and Decision Science (LIDS)
and Center for Computational Science and Engi-
neering, Massachusetts Institute of Technology,
Cambridge, MA, USA. His research interests in-
clude network economics, operations research
and management, and online learning.

Yiwen Song received the B.S. degree from
Shanghai Jiao Tong University, Shanghai, China,
in 2021. He is currently a Ph.D. student of Elec-
trical and Computer Engineering, Carnegie Mel-
lon University, Pittsburgh, PA, USA. His current
research mainly falls in the field of wireless sens-
ing, communication and internet-of-things sys-
tems.

Guiyun Fan received the B.S. degree in Elec-
tronic Information Science and Technology from
Xidian University, Xian, China, in 2016, and
the Ph.D. degree in Electronic Engineering from
Shanghai Jiao Tong University, China, in 2021.
She is currently a Post-Doctoral Research As-
sociate with the Department of Computer Sci-
ence and Engineering in Shanghai Jiao Tong
University. Her current research interests include
network economics and game theory, crowd and
social sensing systems, mobile computing, and

reinforcement learning.

Haiming Jin received the B.S. degree from
Shanghai Jiao Tong University, Shanghai, China,
in 2012, and the Ph.D. degree from the Uni-
versity of Illinois at Urbana-Champaign (UIUC),
Urbana, IL, USA, in 2017. He is currently an
Associate Professor at the John Hopcroft Cen-
ter for Computer Science, Shanghai Jiao Tong
University. He also worked as a Post-Doctoral
Research Associate with the Coordinated Sci-
ence Laboratory in UIUC from 2017 to 2018.
He is broadly interested in addressing unfolding

research challenges in the general areas of urban computing, cyber-
physical systems, crowd and social sensing systems, network eco-
nomics and game theory, reinforcement learning, and mobile pervasive
and ubiquitous computing.

15

Lu Su is an associate professor in the School
of Electrical and Computer Engineering at Pur-
due University. His research interests are in the
general areas of Internet of Things and Cyber-
Physical Systems, with a current focus on wire-
less, mobile, and crowd sensing systems. He
received Ph.D. in Computer Science, and M.S.
in Statistics, both from the University of Illinois at
Urbana-Champaign, in 2013 and 2012, respec-
tively. He has also worked at IBM T. J. Watson
Research Center and National Center for Su-

percomputing Applications. He has published more than 100 papers in
referred journals and conferences, and serves as an associate editor of
ACM Transactions on Sensor Networks. He is the recipient of NSF CA-
REER Award, University at Buffalo Young Investigator Award, ICCPS17
best paper award, and the ICDCS17 best student paper award. He is a
member of ACM and IEEE.

Fan Zhang received the Ph.D. degree in com-
munication and information system from the
Huazhong University of Science and Technol-
ogy in 2007. He was a Post-Doctoral Fellow
with the University of New Mexico and with
the University of Nebraska-Lincoln from 2009 to
2011. He is currently a Professor with the Shen-
zhen Institutes of Advanced Technology, Chi-
nese Academy of Sciences, Shenzhen, China.
He is also the Director of the Shenzhen Institute
of Beidou Applied Technology (SIBAT). His re-

search topics include intelligent transportation systems, urban comput-
ing, and AI technology.

Xinbing Wang received the B.S. degree (with
hons.) in automation from Shanghai Jiao Tong
University, Shanghai, China, in 1998, the M.S.
degree in computer science and technology from
Tsinghua University, Beijing, China, in 2001, and
the Ph.D. degree with a major in electrical and
computer engineering and minor in mathematics
from North Carolina State University, Raleigh,
in 2006. Currently, he is a professor with the
Department of Electronic Engineering, Shang-
hai Jiao Tong University. His research interests

include resource allocation and management in mobile and wireless
networks, TCP asymptotics analysis, wireless capacity, crosslayer call
admission control, asymptotics analysis of hybrid systems, and con-
gestion control over wireless ad hoc and sensor networks. Dr. Wang
has been a member of the Technical Program Committees of several
conferences including ACM MobiCom 2012, ACM MobiHoc 2012, IEEE
INFOCOM 2009-2013.

16

